Jahanbani, AkbarCancan, MuratMotamedi, Ruhollah2025-05-102025-05-1020222314-46292314-478510.1155/2022/74557012-s2.0-85125121377https://doi.org/10.1155/2022/7455701https://hdl.handle.net/20.500.14720/14428Jahanbani, Akbar/0000-0002-2800-4420Let F be the forgotten topological index of a graph G. The exponential of the forgotten topological index is defined as e(F)(G) = sigma((x,y)is an element of S)t(x,y)(G)e((x2+y2)), where t(x,y)(G) is the number of edges joining vertices of degree x and y. Let T-n be the set of trees with n vertices; then, in this paper, we will show that the path P-n has the minimum value for e(F) over T-n.eninfo:eu-repo/semantics/openAccessExtremal Trees for the Exponential of Forgotten Topological IndexArticle2022Q1Q1WOS:000841978900001