Guler, MuhammetKavak, EmrahKivrak, Arif2025-05-102025-05-1020220003-27191532-236X10.1080/00032719.2021.19903102-s2.0-85118194008https://doi.org/10.1080/00032719.2021.1990310https://hdl.handle.net/20.500.14720/8495Kavak, Emrah/0000-0002-6161-2030; Kivrak, Arif/0000-0003-4770-2686A novel electrochemical dopamine (DA) sensor based on Au nanoparticles (AuNPs) electrochemically loaded on poly([2,2 ';5 ',2 '']-terthiophene-3 '-carbaldehyde)/reduced graphene oxide (poly(TTP)/rGO) improved glassy carbon electrode (GCE) was fabricated. The Au@poly(TTP)/rGO/GCE was evaluated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), amperometry, and electrochemical impedance spectroscopy (EIS). The optimized Au@poly(TTP)/rGO/GCE sensor had a wide electroactive surface area and exhibited good selectivity. The linear determination range of the sensor was from 0.02 to 232 mu M with a sensitivity of 315 mu A/mM/cm(2). The limit of detection (LOD) was estimated to be 11.5 nM using signal-to-noise (S/N) ratio of 3. Additionally, the sensor displayed excellent selectivity, satisfactory response time from 4.5 to 6 s, replicability with a relative standard deviation (RSD) of 2.31%, reproducibility with a RSD of 3.67%, and storage stability with 92.57% of its initial current response for 37 days. The Au@poly(TTP)/rGO/GCE was employed to estimate DA in injection samples.eninfo:eu-repo/semantics/closedAccessAmperometryCyclic Voltammetry (Cv)Differential Pulse Voltammetry (Dpv)Dopamine SensorGold NanoparticlesPoly([2, 2 ',5 ', 2 '']-Terthiophene-3 '-Carbaldehyde) [Poly(Ttp)]Reduced Graphene OxideElectrochemical Dopamine Sensor Based on Gold Nanoparticles Electrodeposited on a Polymer/Reduced Graphene Oxide-Modified Glassy Carbon ElectrodeArticle557Q3Q311311148WOS:000710863000001