Allahverdiev, Bilender P.Tuna, HuseyinGolmankhaneh, Alireza Khalili2025-05-102025-05-1020250219-88781793-697710.1142/S02198878255009512-s2.0-85216348417https://doi.org/10.1142/S0219887825500951https://hdl.handle.net/20.500.14720/11196Khalili Golmankhaneh, Alireza/0000-0002-5008-0163; Tuna, Huseyin/0000-0001-7240-8687; Allahverdiev, Bilender P./0000-0002-9315-4652In this paper, the classical one-dimensional Dirac equation is considered under the framework of fractal calculus. First, the maximal and minimal operators corresponding to the problem are defined. Then the symmetric operator is obtained, the Green's function corresponding to the problem is constructed, and the eigenfunction expansion is given. Finally, some examples are given.eninfo:eu-repo/semantics/closedAccessFractalsFractional Differential EquationsDirac OperatorRegular Fractal Dirac SystemsArticleQ2Q2WOS:001412807400001