Golmankhaneh, Alireza KhaliliMyrzakulov, RatbayLi, Shuming2025-12-302025-12-3020252731-80952731-810910.1007/s40995-025-01902-12-s2.0-105024242842https://doi.org/10.1007/s40995-025-01902-1https://hdl.handle.net/20.500.14720/29312This paper presents a novel formulation of the Navier-Stokes equations within a fractal space-time framework by incorporating the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F<^>{\alpha }$$\end{document}-derivative to model fluid behavior in media with non-integer spatial and temporal dimensions. We derive the generalized fractal Navier-Stokes momentum equation and introduce a corresponding fractal Reynolds number that captures the effects of both spatial fractal dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and temporal fractal dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Analytical solutions are obtained for several classical flow problems adapted to fractal geometries, including fractal Poiseuille flow, planar and generalized Couette flow, and their multi-dimensional extensions. The results reveal that increasing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} leads to nonlinear distortions in velocity profiles, while increasing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} alters the relaxation time and can induce temporal instabilities. Graphical illustrations are provided to demonstrate the influence of fractal dimensions on flow characteristics, offering new insight into the behavior of fluids in complex fractal environments.eninfo:eu-repo/semantics/closedAccessFractal CalculusFractal Differential EquationFractal Couette FlowFractal Navier-Stokes EquationFractal Poiseuille FlowAbout the Fractal Navier-Stokes EquationsArticleQ3Q4WOS:001631216300001