Imran, M.Cancan, M.Nadeem, M.Nadeem, M.F.2025-05-102025-05-1020240716-091710.22199/issn.0717-6279-63292-s2.0-85203552167https://doi.org/10.22199/issn.0717-6279-6329https://hdl.handle.net/20.500.14720/3389A graph Ω(Λ, Γ) is considered super edge magic if there exists a bijective function φ: Λ(Ω)∪Γ(Ω) −→ {1, 2, 3,…, |Λ(Ω)|+|Γ(Ω)|} such that φ(τ1)+φ(τ1τ2)+φ(τ2) is a constant for every edge τ1τ2 ∈ Γ(Ω), and φ(Λ(Ω)) = {1, 2, 3,…, |Λ(Ω)|}. Furthermore, the super edge magic deficiency of a graph Ω, denoted as μs(Ω), is either the minimum non-negative integer η such that Ω ∪ ηK1 is a super edge magic graph or +∞ if such an integer η does not exist. In this paper, we investigate the super edge magic deficiency of certain families of graphs. © (2024), (SciELO-Scientific Electronic Library Online). All Rights Reserved.eninfo:eu-repo/semantics/closedAccessDegree Splitting GraphJellyfish GraphJewel GraphQuadrilateral Snake GraphShadow GraphSplitting GraphSuper Edge Magic DeficiencySuper Edge Magic GraphResults on Super Edge Magic Deficiency of Some Well-Known Classes of Finite GraphsArticle435N/AQ310751096