Sevgin, Sebaheddin2025-05-102025-05-1020141687-184710.1186/1687-1847-2014-1712-s2.0-84904464217https://doi.org/10.1186/1687-1847-2014-171https://hdl.handle.net/20.500.14720/15702Sevgin, Sebaheddin/0000-0002-2163-9896We study the convergence properties of a difference scheme for singularly perturbed Volterra integro-differential equations on a graded mesh. We show that the scheme is first-order convergent in the discrete maximum norm, independently of the perturbation parameter. Numerical experiments are presented, which are in agreement with the theoretical results.eninfo:eu-repo/semantics/openAccessSingular PerturbationVolterra Integro-Differential EquationsDifference SchemeUniform ConvergenceGraded MeshNumerical Solution of a Singularly Perturbed Volterra Integro-Differential EquationArticleQ1N/AWOS:000342087000001