Ozok-Arici, OmruyeKaya, SefikaCaglar, AykutKivrak, HilalKivrak, Arif2025-05-102025-05-1020220361-52351543-186X10.1007/s11664-022-09432-x2-s2.0-85123489205https://doi.org/10.1007/s11664-022-09432-xhttps://hdl.handle.net/20.500.14720/14282Kivrak, Hilal/0000-0001-8001-7854; Kivrak, Arif/0000-0003-4770-2686The compound 3-iodo-2-(aryl/alkyl)benzo[b]thiophene (4A-F) has been synthesized as an anode catalyst using the Sonogashira coupling reaction and the electrophilic cyclization reaction in moderate to excellent yields. The glucose electro-oxidation performance of these catalysts has been investigated by electrochemical methods, such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in 1 M KOH + 1 M C6H12O6 solution. When Pd metal is electrochemically deposited on the organic catalyst to increase the electrocatalytic activities, the Pd@4A catalyst exhibits the highest catalytic activity with 0.527 mA/cm(2) current density than the 4A. The CA and EIS results prove that the Pd@4A catalyst has long-term stability and low charge transfer resistance and may be used in metal-organic catalyst systems as an anode catalyst to improve their performance. The results confirm that benzothiophene-based metal systems will be environmentally friendly materials in glucose fuel cells.eninfo:eu-repo/semantics/closedAccessPalladiumGlucose Electro-OxidationBenzothiopheneEnergyGlucose Electrooxidation Study on 3-iodo-2-(aryl/Alkyl)benzo[b]thiophene Organic CatalystArticle514Q3Q216531662WOS:000746797500001