Golmankhaneh, Alireza KhaliliCattani, CarloPasechnik, RomanFuruichi, ShigeruJorgensen, Palle E. T.2025-05-102025-05-1020250217-73231793-663210.1142/S02177323255000142-s2.0-85219126732https://doi.org/10.1142/S0217732325500014https://hdl.handle.net/20.500.14720/12346Furuichi, Shigeru/0000-0002-9929-0954; Jorgensen, Palle/0000-0003-2681-5753; Khalili Golmankhaneh, Alireza/0000-0002-5008-0163; Pasechnik, Roman/0000-0003-4231-0149In this paper, we present a summary of fractal calculus and propose the use of Lagrange multipliers for both fractal calculus and fractal variational calculus with constraints. We examine the application of these methods across various branches of physics. By employing fractal variational calculus with constraints, we derive fundamental equations such as the fractal mechanical wave equation, the fractal Schr & ouml;dinger equation in quantum mechanics, Maxwell's equations in fractal electromagnetism, and the Lagrange equation for constraints in fractal classical mechanics. Several examples are provided to illustrate these concepts in detail.eninfo:eu-repo/semantics/closedAccessFractal CalculusLagrangian MultipliersFractal Variational CalculusConstraintsFractal Calculus of Variations for Problems With ConstraintsArticle4007N08Q3Q3WOS:001450562500002