Browsing by Author "Şevgin, Sebaheddin"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Master Thesis Birinci Dereceden Lineer Diferansiyel Denklemlerin Hyers-Ulam Kararlılığı(2013) Tanhan, Abdullah; Şevgin, Sebaheddin; Şevli, HamdullahBu çalışmada öncelikle birinci mertebeden homojen ve homojen olmayan lineer adi diferansiyel denklemlerin Hyers-Ulam kararlılığı incelenmiştir. Daha sonra homojen olmayan birinci mertebeden lineer diferansiyel denklemlerin özel bir türünün Hyers-Ulam kararlılığı ispatlandı ve burada elde edilen sonuç ikinci mertebeden Cauchy-Euler denkleminin Hyers-Ulam kararlılığını göstermek için kullanılmıştır. Ayrıca lineer hale dönüştürülerek çözülebilen lineer olmayan birinci mertebeden adi diferansiyel denklemlerden Bernoulli ve Riccati diferansiyel denklemlerin Hyers-Ulam kararlılıkları ispatlanmıştır. Anahtar kelimeler: Lineer diferansiyel denklem, Hyers-Ulam kararlılığı, Cauchy-Euler denklemi, Bernoulli diferansiyel denklemi, Riccati diferansiyel denklemi.Master Thesis Hyers-Ulam Stability of Some Boundary-Value Problems(2019) Unutur, Merve; Şevgin, SebaheddinBu tez çalışmasında, bazı sınır-değer problemlerinin Hyers-Ulam kararlılığı ve Hyers-Ulam-Rassias kararlılığı incelendi. İlk olarak lineer olmayan iki-nokta sınır-değer probleminin kararlılığı bir genelleşmiş sabit nokta teoremi kullanılarak ispatlandı, ve daha sonra ağırlıklı uzay yöntemi adı verilen bir yöntem kullanılarak Hyers-Ulam-Rassias kararlılığa sahip olduğu gösterildi. İkinci olarak integral sınır koşullu lineer olmayan bir sınır-değer probleminin kararlılığı aynı yöntemler kullanılarak ispatlandı. Anahtar sözcükler: Ağırlıklı uzay yöntemi, Hyers-Ulam kararlılık, Hyers-Ulam-Rassias kararlılık, Sabit nokta teoremi, Sınır-değer problemiMaster Thesis Hyers-Ulam Stability of the First Order Nonhomogeneous Linear Dynamic Equation and Volterra Integro-Dynamic Equation on Time Scale(2020) Çakıl, Makbule; Şevgin, SebaheddinBu tez çalışmasında ilk olarak, zaman skalası üzerinde birinci mertebeden homojen olmayan lineer dinamik denklemin Hyers-Ulam-Rassias kararlılığı Jung'un (2006a) yöntemi kullanılarak gösterilmiştir. Sonra, ağırlıklı uzay yöntemi kullanarak zaman skalası üzerinde Volterra integro-dinamik denklemin Hyers-Ulam-Rassias kararlılığı gösterilmiştir. Ağırlıklı uzay yöntemi, bir ağırlık fonksiyonunun standart metrik ile çarpılmasıyla oluşturulan metrik ile donatılan metrik uzay üzerinde Banach Sabit Nokta Teoremini uygular. Ağırlıklı uzay yöntemi Hyers-Ulam-Rassias kararlılığı göstermek amacıyla ilk olarak Gavruta ve Gavruta (2010) tarafından kullanılmıştır. Bu çalışmada göz önüne alınan bu iki denklemin Hyers-Ulam-Rassias kararlılıkları, a ve b reel sayılar ve aMaster Thesis Layer-Adapted Meshes for Convection-Diffusion Problems(2009) Karaaslan, Mehmet Fatih; Şevgin, SebaheddinBu çalışmanın amacı, singüler pertürbeli problemlerin nümerik çözümünü bulmak için standart fark şemasında kullanılan sınır katmanına uyarlanmış şebekelerin pertürbasyon parametresine göre düzgün yakınsak yöntemler verdiğini gösteren teorik sonuçlar ortaya koymaktır. Bu doğrultuda, ilk olarak bu tip problemlerin bazı özellikleri incelenmiş ve çözümün grafiğinin hızla değiştiği tanım kümesinin ince geçiş katlarında problemin yapısına uygun şebekeler ele alınmıştır. Diferansiyel operatör ve fark operatörünün kararlılığını analiz etmek için önemli kavramlar verilmiştir. Sürekli problemin çözümüne ait türev sınırları elde edilmiş ve hata değerlendirmesini bulmak için sürekli ve fark probleminin sınır katmanı ile düzgün bileşenleri ayrı olarak ele alınıp kullanılmıştır. Bununla birlikte kesme hatası ve bariyer fonksiyonu tekniği yoluyla katmana uyarlı şebekeler için yakınsaklık analizi yapılmaktadır.Nümerik yöntemin pertürbasyon parametresine göre düzgün yakınsaklığını elde etmek için fark türevi, uygun şebeke ve kararlılık seçiminin etkinliği görülmektedir.Master Thesis Numerical Solutions of Singularly Perturbed Riccati Equation(2014) Şehitoğlu, Adem; Şevgin, SebaheddinBu çalışmada singüler pertürbe Riccati diferansiyel denklemi için bazı nümerik yöntemler incelendi. İlk olarak bir üstel katsayılı fark şeması ele alındı ve bu şemanın perturbasyon parametresine göre düzgün yakınsak olduğu gösterildi. Daha sonra bu fark şemasının geliştirilmiş bir biçimi ele alındı ve yeni fark şemasının bir küçük ε parametresine göre optimal ve düzgün olduğu gösterildi. Son olarak nümerik örnekler verilerek, verilen fark şemaları ile bazı nümerik yöntemler karşılaştırıldı.