Browsing by Author "Aksulu, Ayca"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Comparison of Protectiveness of Recombinant Babesia Ovis Apical Membrane Antigen 1 and B. Ovis-Infected Cell Line as Vaccines Against Ovine Babesiosis(Elsevier Gmbh, 2020) Bilgic, Huseyin Bilgin; Hacilarlioglu, Selin; Bakirci, Serkan; Kose, Onur; Unlu, Ahmet Hakan; Aksulu, Ayca; Karagenc, TulinBabesiosis is a disease complex caused by unicellular Babesia parasites and among them, malignant ovine babesiosis caused by B. ovis has a devastating economical impact on the small ruminant industry. The control of disease is mainly based on chemotherapy and preventing animals from tick infestation and to date no vaccine is available against ovine babesiosis. The requirement for vaccination against B. ovis infection in endemically unstable regions is necessary for implementation of effective disease control measures. The aim of the present study was to evaluate the effectiveness of different immunisation protocols against disease in sheep experimentally vaccinated with recombinant B. ovis apical membrane antigen-1 (rBoAMA-1) and/or live, a B. ovis-infected cell line. Sheep were divided into four experimental groups, plus a control group. Animals were immunised either with the B. ovis stabilate, or with rBoAMA-1, or with both rBoAMA-1 and the B. ovis stabilate. Western blots and ELISAs indicated that immunisation with rBoAMA-1 resulted in generation of a specific response against the recombinant protein, but the degree of antibody response did not correlate with the level of induced protection against challenge. The strongest immune response was induced in animals co-immunised with the live B. ovis stabilate plus rBoAMA-1. Both the hematological and parasitological findings indicated that this co-immunisation regimen has vaccine potential to limit losses incurred by ovine babesiosis in endemic countries.Article Infection Dynamics of Theileria Annulata Over a Disease Season Following Cell Line Vaccination(Elsevier Science Bv, 2019) Bilgic, Huseyin Bilgin; Aksulu, Ayca; Bakirci, Serkan; Unlu, Ahmet Hakan; Kose, Onur; Hacilarhoglu, Selin; Karagenc, TulinTropical theileriosis is a tick-borne haemoparasitic disease of cattle caused by the protozoan parasite Theileria annulata. Globally, the economic impact of the disease is immense and enhanced control measures would improve livestock production in endemic regions. Immunisation with a live attenuated vaccine is an effective and widely used control method, however, the repeated use of live vaccines may have an impact on the field parasite population at a genetic level. Additionally, there has been an increasing number of reports of vaccine break-through cases in recent years. Thus, the present study was designed to evaluate the genetic composition of a parasite population over a disease season in a locality where live cell line vaccination is practised. A diverse range of parasite genotypes was identified and every T. annulata positive cattle blood sample harboured multiple parasite genotypes. An alteration in the major genotype and an increasing multiplicity of infection in individual animals was observed over the course of the disease season. Vaccination status was found not to effect within-host multiplicity of infection, while a significantly higher number of genotypes was detected in grazed cattle compared to non-grazed ones. A degree of genetic isolation was evident between parasite populations on a micro-geographic scale, which has not been reported previously for T. annulata. Analysis of parasite genotypes in vaccinated animals suggested only a transient effect of the vaccine genotype on the genetic diversity of the T. annulata population. The vaccine genotype was not detected among clones of two vaccine 'breakthrough' isolates and there is no suggestion that it was responsible for disease. The obtained data indicated that in the system studied there is no apparent risk of introducing the vaccine genotype into the population with only a transient effect on the genetic diversity of the parasite population during the disease season.