1. Home
  2. Browse by Author

Browsing by Author "Alacabey, Ihsan"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Adsorption of Zinc(Ii) on Diatomite and Manganese-Oxide Diatomite: a Kinetic and Equilibrium Study
    (Elsevier, 2011) Caliskan, Necla; Kul, Ali Riza; Alkan, Salih; Sogut, Eda Gokirmak; Alacabey, Ihsan
    The removal of Zn(II) ions from aqueous solution was studied using natural and MnO2 modified diatomite samples at different temperatures. The linear Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption equations were applied to describe the equilibrium isotherms. From the D-R model, the mean adsorption energy was calculated as >8 kJ mol(-1), indicating that the adsorption of Zn(II) onto diatomite and Mn-diatomite was physically carried out. In addition, the pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to determine the kinetic data. The experimental data were well fitted by the pseudo-second-order kinetic model. Thermodynamic parameters such as the enthalpy (Delta H-0), Gibbs' free energy (Delta G(0)) and entropy (Delta S-0) were calculated for natural and MnO2 modified diatomite. These values showed that the adsorption of Zn(II) ions onto diatomite samples was controlled by a physical mechanism and occurred spontaneously. (C) 2011 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Characteristic Properties of Adsorbed Catalase Onto Activated Carbon Based Adiyaman Lignite
    (Parlar Scientific Publications (p S P), 2011) Depci, Tolga; Alkan, Salih; Kul, Ali Riza; Onal, Yunus; Alacabey, Ihsan; Disli, Erkan
    Catalase is one of the most common and important enzymes in biological systems. However, its purification process has some difficulties and it can be easily decomposed in aqueous or nonaqueous solutions. Therefore, a catalase should be adsorbed on solid materials to reduce its inactivation and to increase its economic value. Activated carbon which was obtained from Turkish low-rank coal (Golbasi-Adiyaman) by chemical activation was used as a solid carrier to adsorb catalase for the first time in this research. The pore structure of the activated carbon was determined by A Tri Star 3000 (Micromeritics, USA) surface analyzer and scanning electron microscope. In order to determine adsorption properties of catalase, ionic strength effect, temperature-activity, pH-activity, storage stability and operational stability of the activated carbon were investigated. The kinetic and thermodynamic mechanisms of adsorbed enzyme were also studied. The experimental results pointed out that the obtained activated carbon is a viable candidate for an alternative solid carrier for catalase and it may be a promising material for various biotechnological applications.
  • Loading...
    Thumbnail Image
    Article
    Effective Removal of Dyes From Aqueous Systems by Waste-Derived Carbon Adsorbent: Physicochemical Characterization and Adsorption Studies
    (Nature Portfolio, 2025) Kuyucu, Ali Ender; Selcuk, Ahmet; Onal, Yunus; Alacabey, Ihsan; Erol, Kadir
    Due to their cost-effectiveness and high surface area, activated carbons are commonly used for the adsorption of dyes from aqueous solutions. In this study, activated carbon was synthesized from walnut shell waste via KOH activation (1:3 ratio), yielding a surface area of 2347.4 m(2)/g. Reactive Blue 19 and Reactive Red 195 adsorption behavior were studied under varying experimental conditions. These included natural pH values (6.8-7.2), dye concentrations between 50 and 1250 mg L--(1), and adsorbent dosages ranging from 0.1 to 1.0 g. Adsorption equilibrium was achieved within 150 min. The maximum adsorption capacities were found to be 1227.17 mg g(-)(1) for RB 19 and 235.74 mg g(-)(1) for RR 195. Isotherm modeling was conducted using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models, with Freundlich providing the best fit for both dyes, indicating multilayer adsorption on heterogeneous surfaces. Thermodynamic analysis revealed that the adsorption processes were spontaneous and endothermic, with negative Gibbs free energy (Delta G degrees), positive enthalpy (Delta H degrees), and positive entropy (Delta S degrees) values. These results highlight the high adsorption performance and practical potential of walnut shell-derived activated carbon for dye removal from wastewater.