Browsing by Author "Avci, Cigir Biray"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Doxorubicin-Induced Senescence Promotes Resistance To Cell Death by Modulating Genes Associated With Apoptotic and Necrotic Pathways in Prostate Cancer Du145 Cd133+/Cd44+cells(Academic Press inc Elsevier Science, 2023) Tatar, Cansu; Avci, Cigir Biray; Acikgoz, Eda; Oktem, GulperiCancer stem cells (CSCs) are the most important cause of cancer treatment failure. Traditional cancer treatments, such as chemotherapy and radiotherapy, damage healthy cells alongside malignant cells, leading to severe adverse effects. Therefore, inducing cellular senescence without triggering apoptosis, which further damages healthy cells, may be an alternative strategy. However, there is insufficient knowledge regarding senescence induction in CSCs that show resistance to treatment and stemness properties. The present study aims to elucidate the effects of senescence induction on proliferation, cell cycle, and apoptosis in prostate CSCs and non-CSCs. Prostate CSCs were isolated from DU145 cancer cells using the FACS method. Subsequently, senescence induction was performed in RWPE-1, DU145, prostate CSCs, and non-CSCs by using different concentrations of Doxorubicin (DOX). Cellular senescence was detected using the senescence markers SA-beta-gal, Ki67, and senescence-associated heterochromatin foci (SAHF). The effects of senescence on cell cycle and apoptosis were evaluated using the Muse Cell Analyzer, and genes in signaling pathways associated with the apoptotic/necrotic pathway were analyzed by real-time PCR. Prostate CSCs were isolated with 95.6 +/- 1.4% purity according to CD133+/CD44+ characteristics, and spheroid formation belonging to stem cells was observed. After DOXinduced senescence, we observed morphological changes, SA-beta-gal positivity, SAHF, and the lack of Ki67 in senescent cells. Furthermore; we detected G2/M cell cycle arrest and downregulation of various apoptosis-related genes in senescent prostate CSCs. Our results showed that DOX is a potent inducer of senescence for prostate CSCs, inhibits proliferation by arresting the cell cycle, and senescent prostate CSCs develop resistance to apoptosis.Article Sonic Hedgehog Signaling Is Associated With Resistance To Zoledronic Acid in Cd133high/Cd44high Prostate Cancer Stem Cells(Springer, 2021) Acikgoz, Eda; Mukhtarova, Gunel; Alpay, Araz; Avci, Cigir Biray; Bagca, Bakiye Goker; Oktem, GulperiCancer stem cells (CSCs) are a unique population that has been linked to drug resistance and metastasis and recurrence of prostate cancer. The sonic hedgehog (SHH) signal regulates stem cells in normal prostate epithelium by affecting cell behavior, survival, proliferation, and maintenance. Aberrant SHH pathway activation leads to an unsuitable expansion of stem cell lineages in the prostate epithelium and the transformation of prostate CSCs (PCSCs). Zoledronic acid (ZOL), one of the third-generation bisphosphonates, effectively prevented bone metastasis and treated advanced prostate cancer despite androgen deprivation therapy. Despite strong evidence for the involvement of the SHH in human PCSCs survival and drug resistance, the roles of SHH in the PCSCs-related resistance to ZOL remain to be fully elucidated. The present study aimed to investigate the role of the SHH pathway in ZOL resistance of PCSCs in 2D and three 3D cell culture conditions. For this purpose, we isolated CD133(high)/ CD44(high) PCSCs using a flow cytometer. Following ZOL treatment, mRNA and protein expressions of the components of the SHH signaling pathway in PCSCs and non-CSCs were analyzed using qRT-PCR and Immunofluorescence staining, respectively. Our finding suggested that SHH signaling may be activated by different mechanisms that lead to avoidance of the inhibition effect of ZOL. Thereby, SHH pathways may be associated with the resistance to ZOL developed by prostate CSCs. Inhibition of CSCs-related SHH signaling along with ZOL treatment should be considered to achieve improvement in survival or delayed treatment failure and prevention of the CSCs-related drug resistance.