Browsing by Author "Aydin, Suna"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Adropin as a Potential Marker of Enzyme-Positive Acute Coronary Syndrome(Clinics Cardive Publ Pty Ltd, 2017) Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Yardim, Meltem; Alatas, Omer Dogan; Aydin, SuleymanAim: Enzyme-positive acute coronary syndrome (EPACS) can cause injury to or death of the heart muscle owing to prolonged ischaemia. Recent research has indicated that in addition to liver and brain cells, cardiomyocytes also produce adropin. We hypothesised that adropin is released into the bloodstream during myocardial injury caused by acute coronary syndrome (ACS), so serum and saliva levels rise as the myocytes die. Therefore, it could be useful to investigate how ACS affects the timing and significance of adropin release in human subjects. Methods: Samples were taken over three days after admission, from 22 EPACS patients and 24 age-and gendermatched controls. The three major salivary glands (submandibular, sublingual and parotid) were immunohistochemically screened for adropin production, and serum and saliva adropin levels were measured by an enzyme-linked immuno-sorbent wassay (ELISA). Salivary gland cells produce and secrete adropin locally. Results: Serum adropin, troponin I, CK and CK-MB concentrations in the EPACS group became gradually higher than those in the control group up to six hours (p < 0.05), and troponin I continued to rise up to 12 hours after EPACS. The same relative increase in adropin level was observed in the saliva. Troponin I, CK and CK-MB levels started to decrease after 12 hours, while saliva and serum adropin levels started to decrease at six hours after EPACS. In samples taken four hours after EPACS, when the serum adropin value averaged 4.43 ng/ml, the receiver operating characteristic curve showed that the serum adropin concentration indicated EPACS with 91.7% sensitivity and 50% specificity, while when the cut-off adropin value in saliva was 4.12 ng/ml, the saliva adropin concentration indicated EPACS with 91.7% sensitivity and 57% specificity. Conclusion: In addition to cardiac troponin and CK-MB assays, measurement of adropin level in saliva and serum samples is a potential marker for diagnosing EPACS.Article A Comprehensive Immunohistochemical Examination of the Distribution of the Fat-Burning Protein Irisin in Biological Tissues(Elsevier Science inc, 2014) Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Kalayci, Mehmet; Yilmaz, Musa; Cakmak, Tolga; Ozercan, Ibrahim HanifiIrisin was first identified in skeletal muscle cells, but its precise location has not yet been demonstrated, and there is limited information about irisin protein in other human and rat tissues. The present immunohistochemical study was undertaken to screen skeletal muscle and other tissues for irisin immunoreactivity.. Irisin staining was found in the brain (neurons and neuroglia), cardiac and skeletal muscle (fibers) and skin (sebaceous glands) tissues in male rats. In both human adult and fetal skeletal muscle, the most intense immunohistochemical staining was in the perimysium and endomysium, in the peripheral nerve (epineurium) and axon and nerve sheaths spreading among the cells, in the sarcoplasma and subendomysium. Irisin was also demonstrated in the testis (seminiferous tubules, some spermatogenic cells in fetal and Leydig cells in fetal and adult testis, ductus epididymis in fetal human epididymis); pancreas (islets of Langerhans, serous acini cells, intralobular and intralobular ducts cells); liver (hepatocytes; Kupffer cells and sinusoidal endothelial cells); spleen (subcapsular region and periarterial lymphatic sheets); the stomach (gastric parietal cells, tunica muscularis cells). We conclude that the fat-burning protein irisin locally produced in peripheral and central tissues could act as a gatekeeper of metabolic energy regulation in those tissues, since this myokine converts white into brown adipose tissue, enhancing energy expenditure. (C) 2014 Elsevier Inc. All rights reserved.Article Elevated Adropin: a Candidate Diagnostic Marker for Myocardial Infarction in Conjunction With Troponin-I(Elsevier Science inc, 2014) Aydin, Suna; Kuloglu, Tuncay; Aydin, Suleyman; Kalayci, Mehmet; Yilmaz, Musa; Cakmak, Tolga; Eren, Mehmet NesimiMyocardial infarction (MI; "heart attack") can cause injury to or death of heart muscle tissue (myocardium) owing to prolonged ischemia and hypoxia. Troponins and CK-MB are released from heart muscle cells during MI. It has been demonstrated that energy expenditure is regulated by adropin expressed in the endocardium, myocardium, and epicardium. We hypothesized that adropin is released into the bloodstream during myocardial muscle injury caused by MI, so the serum level rises as myocytes die. Therefore, we examined the association between adropin expression and myocardial infarction in isoproterenol-induced myocardial infarction. Rats were randomly allocated to six groups. After treatment they were decapitated and their blood and tissues were collected for adropin measurement. Changes in adropin synthesis in rat heart, kidney and liver tissues in isoproterenol (ISO)-induced MI were demonstrated immunohistochemically. Serum adropin concentrations were measured by ELISA, and troponin-I, CK and CK-MB concentrations by autoanalysis. The results demonstrated that cardiac muscle cells, glomerular, peritubular and renal cortical interstitial cells, hepatocytes and liver sinusoidal cells all synthesize adropin, and synthesis increased 1-24 h after MI except in the liver cells. The findings elucidate the pathogenesis of MI, and the gradual increase in serum adropin could be a novel diagnostic marker and serve as an alternative to troponin-I measurement for diagnosing MI. (C) 2014 Elsevier Inc. All rights reserved.