Browsing by Author "Aygun, Aysenur"
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Article Assessment of Therapeutic Potential of Silver Nanoparticles Synthesized by Ferula Pseudalliacea Rech. F. Plant(Elsevier, 2022) Kocak, Yilmaz; Oto, Gokhan; Meydan, Ismet; Seckin, Hamdullah; Gur, Tugba; Aygun, Aysenur; Sen, FatihPlant-mediated synthesis of silver nanoparticles (Ag NPs) has increased its use in various biomedical applications due to its cost-effectiveness, renewable and environmentally friendly properties. Therefore, the focus of the study was to synthesize Ag NPs and to evaluate their antibacterial, and antioxidant activities by using the aqueous root extract of Ferula pseudodalliacea plant as a reducing agent. In addition, the synthesis of nanoparticles was confirmed by performing Ag NPs/Fp characterization processes. According to the findings of our research, color change due to surface plasmon resonance was confirmed by UV-vis spectrometry. The crystal properties of Ag NPs/Fp were determined according to the XRD model. Phytochemicals responsible for coating and reduction of Ag NPs/Fp were observed by FT-IR analysis. It has been shown that the therapeutic effect of Ag NPs/Fp exhibits better antimicrobial and antioxidant activity than aqueous extract. In addition, it was determined that Ag NPs/Fp structures showed the best antifungal effect against Candida albicans ATTC 90028 pathogen and gave a better zone than Rifampicin antibiotic. Therefore, studies at the molecular level and more comprehensively are required to determine the bioactive components and pharmacological effects of Ferula pseudodalliacea plant to confirm our antibacterial, antioxidant, and antifungal activity results.Article Biogenic Platinum-Based Bimetallic Nanoparticles: Synthesis, Characterization, Antimicrobial Activity and Hydrogen Evolution(Pergamon-elsevier Science Ltd, 2023) Darabi, Rozhin; Alown, Fadaa E. D.; Aygun, Aysenur; Gu, Qiang; Gulbagca, Fulya; Altuner, Elif Esra; Karimi-Maleh, HassanIn this study, platinum-based silver nanoparticles (Pt@Ag NPs) were synthesized by the green synthesis method, and their catalytic effects on hydrogen production were investi-gated. The characterization measurements of the synthesized NPs were performed by TEM, UV-Vis, XRD, and FTIR. According to TEM characterization results, Pt@Ag NPs had an average size of 5.431 nm. In experiments based on catalytic reactions for hydrogen pro-duction, test measurements were made at different parameters. It was observed that as the concentrations of the substrate and catalysts increased, the catalytic reaction accelerated, and the hydrogen release increased. Likewise, it was determined that hydrogen production increased with increasing temperature in different temperature experiments. The turnover frequency, entropy, activation energy, and enthalpy values are calculated as 702.38 h-1,-160.5 J/mol.K, 32.48 kJ/mol, and 29.94 kJ/mol, respectively. According to the reusability test results, it was observed that the average reusability was found to be 85% after 5 cycles and it was confirmed that the NPs showed high-catalytic activity. In addition, the biological activities of Pt@Ag NPs, including antimicrobial, antioxidant and anticancer were tested. Pt@Ag NPs synthesized using Hibiscus sabdariffa (Hs) extract are thought to have the po-tential to be used in both biomedical and catalytic applications. The use of Pt@Ag NPs in the hydrogen production process shows great promise for green energy studies because it is environmentally friendly, non-toxic, and low cost. & COPY; 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Article Carbon-Nanotube Rhodium Nanoparticles as Highly-Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature(Academic Press inc Elsevier Science, 2018) Gunbatar, Serdar; Aygun, Aysenur; Karatas, Yasar; Gulcan, Mehmet; Sen, FatihIn this study, we present a carbon nanotube-based Rh nanomaterial as a highly active catalyst for the hydrolytic dehydrogenation of dimethylamine - borane (DMAB) at room temperature. The prepared multi-walled carbon nanotube based Rh nanoparticles, called Rh NPs@ MWCNT, was readily prepared, stabilized and effectively used for the hydrolytic dehydrogenation of DMAB under ambient conditions. Monodisperse Rh NPs@ MWCNT nanocatalyst was characterized by using advanced analytical methods such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) etc. These analytical methods revealed that Rh nanoparticles on the surface of MWCNT were well dispersed and the average particle size was found to be 1.44 +/- 0.17 nm. The catalytic experiments revealed that the new Rh NPs@MWCNT nanocatalyst has a high catalytic effect to obtain hydrogen in 3.0 equation from DMAB, and the record catalytic TOF value for the catalytic reaction catalyzed by Rh NPs@MWCNT nanocatalyst was found to be 3010.47 h(-1) at room temperature. The current study presents the detailed kinetic studies of the hydrolytic dehydrogenation of DMAB catalyzed by Rh NPs@MWCNT, the results of catalytic experiments were performed at different temperatures, substrate and catalyst concentrations, the Rh NPs@MWCNT nanocatalyst was effectively used in the completion of the hydrolytic dehydrogenation of DMAB, and activation energy, enthalpy and entropy parameters. The experimental results showed that monodisperse Rh NPs@MWCNT nanocatalyst have record catalytic activity with TOF value of 3010.47 h(-1), and Rh(0) nanoparticles were well dispersed on the multi-walled carbon nanotubes. (C) 2018 Elsevier Inc. All rights reserved.Article Chitosan/Pva-supported Silver Nanoparticles for Azo Dyes Removal: Fabrication, Characterization, and Assessment of Antioxidant Activity(Royal Soc Chemistry, 2024) Meydan, Ismet; Aygun, Aysenur; Tiri, Rima Nour Elhouda; Gur, Tugba; Kocak, Yilmaz; Seckin, Hamdullah; Sen, FatihWith the advancement of technology, studies in the field of nanotechnology have attracted great interest in recent years. The fact that nanomaterials have superior advantages over micromaterials provides a wide range of uses. Green synthesis is an effective way to prepare nanomaterials with an easy, fast, and environmentally friendly method. Within the scope of the study, AgNPs were synthesized using basil extract and combined with chitosan/PVA as a support material. By using chitosan/PVA support materials, the surface area of AgNPs was increased and it was aimed to improve their properties. The synthesized AgNPs@chitosan/PVA nanocomposite was characterized using various methods. In the UV-Vis spectrum, an absorbance peak was observed at 430 nm for the AgNPs@chitosan/PVA nanocomposite, and the particle size was determined as 25.10 nm according to TEM results. In addition, the photocatalytic and antioxidant activities of AgNPs@chitosan/PVA nanocomposite were investigated. The antioxidant activity of the AgNPs@chitosan/PVA (100 mu g mL-1) nanocomposite against DPPH and H2O2 was determined as 89.18% and 71.87%, respectively. The photocatalytic activity of the AgNPs@chitosan/PVA nanocomposite against methylene blue (MB), methylene red (MR), methylene orange (MO), safranin, and crystal violet (CV) dyes was 77%, 85%, 79%, 54%, and 9%, respectively. While the highest photocatalytic activity was observed against MR dye, very low photocatalytic activity was observed for CV. In light of the results obtained, it can be said that the AgNPs@chitosan/PVA nanocomposite has the potential to be used as an antioxidant agent and photocatalyst. The photocatalytic activity of AgNPs@chitosan/PVA nanocomposite was tested against different dyes such as methylene blue, methylene orange, and methylene red as an effective photocatalyst.Article Efficient Green Photocatalyst of Silver-Based Palladium Nanoparticles for Methyle Orange Photodegradation, Investigation of Lipid Peroxidation Inhibition, Antimicrobial, and Antioxidant Activity(Pergamon-elsevier Science Ltd, 2022) Karimi, Fatemeh; Rezaei-savadkouhi, Negin; Aygun, Aysenur; Tiri, Rima Nour Elhouda; Meydan, Ismet; Aghapour, Elaheh; Ucar, MustafaNanotechnology is an interdisciplinary study that has been developing worldwide in recent years and has a serious impact on human life. The fact that the nanoparticles of plant origin are clean, non-toxic, and biocom-patible has enabled new fields of study. The Hibiscus sabdariffa (H. sabdariffa) plant has been attracted by sci-entists because of its impact on health and many other areas. The lipid peroxidation inhibiting activity, antioxidant properties, and antimicrobial properties of H. sabdariffa plant with Ag-Pd metal was ditermined. For the total phenolic component, gallic acid was used as the standard and quarcetin was used for the total flavonoid. The lipid peroxidation inhibition activity of Ag-Pd NPs in ethanol extract was found to be very well compared to the positive control (BHA). The lowest and highest concentrations of DPPH radical scavenging activity were 82.178-97.357%, whereas for BHA these values were found to be 84.142-94.142%. The highest concentration of Ag-Pd NPs at 200 mu g/mL the DPPH radical quenching activity was higher than BHA. Ag-Pd NPs showed a good antimicrobial activity against certain pathogenic microorganisms such as Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, which are the causative agents of various diseases in humans. The photodegradation activity of Ag-Pd NPs also investigated against Methyl orange dye (MO) under sunlight irradiation for 120 min and was found to be as 67.88%Article An Environmental Approach for the Photodegradation of Toxic Pollutants From Wastewater Using Pt-Pd Nanoparticles: Antioxidant, Antibacterial and Lipid Peroxidation Inhibition Applications(Academic Press inc Elsevier Science, 2022) Seckin, Hamdullah; Tiri, Rima Nour Elhouda; Meydan, Ismet; Aygun, Aysenur; Gunduz, Meliha Koldemir; Sen, FatihBackground: Green synthesis is an effective and friendly method for the environment, especially in recent years has been used in many areas. It finds application opportunities in many fields such as physics, chemistry, electronics, food, and especially health and is the subject of intensive studies in this field. Objectives: The synthesized Pt-Pd NPs were aimed to be used as a bio-based photocatalyst under sunlight to prevent wastewater pollution. In addition, it is aimed to use Pt-Pd NPs as biological agents in different applications in the future. Methods: In this study, the platinum-palladium nanoparticles were synthesized by the extract of Hibiscus sabdariffa, the characterization of the nanoparticles was carried out by different methods (ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), infrared transform spectroscopy atomic force microscopy (AFM), and ray diffraction (XRD) analysis). And we discussed several different parameters related to human health by obtaining platinum-palladium bimetallic nanoparticles (Pt-Pd NPs) with a green synthesis method. These parameters are antioxidant properties (total phenolic, flavonoid, and DPPH scavenging activity), antibacterial activity, and lipid peroxidation inhibition activity. Gallic acid was used as standard phenolic, and quercetin was used as standard flavonoid reagents. The newly synthesized Hibiscus sabdariffa mediated green synthesized Pt-Pd NPs were compared with gram-positive and gram-negative bacteria, the high antibacterial activity was shown by gram-positive bacteria. The photodegradation of Pt-Pd NPs was carried out against MB dye for 180 min. Results: TEM results show that the average size of Pt-Pd NPs is around 4.40 nm. The total amount of phenolic compounds contained in 0.2 mg/ml of Pt-Pd NPs was equivalent to 14.962 +/- 7.890 mu g/ml gallic acid and the total amount of flavonoid component was found to be equal to 28.9986 +/- 0.204 mu g/ml quercetin. Hibiscus sabdariffa mediated green synthesized Pt-Pd NPs was found to have very effective for lipid pemxidation inhibition activity in the FeCl2-H2O2 system. The maximum DPPH scavenging activity was determined as 97.35% at 200 mu g/mi. The photocatalytic activity of Pt-Pd NPs was analysed against Methylene blue (MB) and the maximum degradation percentage was observed to be 83.46% at 180 min. Conclusions: The biogenic Pt-Pd NPs showed a high effective photocatalytic and biological activity.Article Facile Bio-Fabrication of Pd-Ag Bimetallic Nanoparticles and Its Performance in Catalytic and Pharmaceutical Applications: Hydrogen Production and In-Vitro Antibacterial, Anticancer Activities, and Model Development(Elsevier, 2022) Gulbagca, Fulya; Aygun, Aysenur; Altuner, Elif Esra; Bekmezci, Muhammed; Gur, Tugba; Sen, Fatih; Vasseghian, YasserThe production of nanoparticles by the biosynthesis method attracts great attention due to their environmentally friendly structure and biocompatibility. In this study, a green method for the synthesis of Palladium-Silver nanoparticles (Pd-Ag NPs) using the extract of Nigella satioa seeds is reported. Pd-Ag NPs obtained by the green synthesis method were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis spectrometry, and X-Ray diffraction patterns (XRD). Pd-Ag NPs were seen to have a spherical structure in the TEM analysis image and the average particle size was found to be 6.80 nm. In addition, the anticancer and antibacterial activities of Pd-Ag NPs synthesized by the green synthesis method were investigated. Pd-Ag NPs had lethality of 69.26%, 52.28%, 76.90%, and 57.49% respectively, against Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Bacillus subtilis, and Escherichia coli bacteria at 200 mu g/mL. Besides, the antibacterial activity of Pd-Ag NPs against B. subtilis, S. aureus, and MRSA bacteria was developed by the Neuro-fuzzy (ANFIS) model. The minimum inhibitory concentration (IC50) values of Pd-Ag NPs against human breast cancer cells, human endometrial carcinoma cells, and human cervical cancer cell lines were determined as 12.4384 +/- 0.39 mu g/mL, 13.5043 +/- 0.539 mu g/mL, 17.7172 +/- 0.782 mu g/mL, respectively. The catalytic activity of Pd-Ag NPs was investigated by sodium borohydride (NaBH4) hydrolysis. Enthalpy, entropy, turner of frequency (TOF), and activation energy values were calculated as 24.51 kJ/mol, -183.15 J/mol.K, 1387.29 h(-1), 27.01 kJ/mol, respectively. In the light of the obtained results, it promises that Pd-Ag NPs may play a therapeutic role in complications related to cancer and bacterial infections. The use of Pd-Ag NPs as catalysts will contribute to the development and application of new nano-catalysts to reduce environmental pollution. (C) 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.Article Facile Synthesis of Biogenic Palladium Nanoparticles Using Biomass Strategy and Application as Photocatalyst Degradation for Textile Dye Pollutants and Their In-Vitro Antimicrobial Activity(Pergamon-elsevier Science Ltd, 2022) Liang, Yunyi; Demir, Halit; Wu, Yingji; Aygun, Aysenur; Tiri, Rima Nour Elhouda; Gur, Tugba; Vasseghian, YasserAmong biological applications, plant-mediated Pd NPs for multi-drug resistance (MDR) developed in pathogenic bacteria were synthesized with the help of biomass of lemon peel, a biological material, with a non-toxic, environmentally friendly, human-nature green synthesis method. Characterization of synthesized Pd NPs was carried out by UV-Vis spectrometry, Transmissive Electron Microscopy (TEM), X-ray diffraction (XRD), andArticle Green Synthesis and Characterization of Camellia Sinensis Mediated Silver Nanoparticles for Antibacterial Ceramic Applications(Elsevier Science Sa, 2020) Gol, Fatma; Aygun, Aysenur; Seyrankaya, Abdullah; Gur, Tugba; Yenikaya, Cengiz; Sen, FatihThis study focuses on the use of green synthesized silver nanoparticles (Ag-NPs) with the aid of Camellia sinensis (black tea) extract to provide antibacterial activity on ceramic structure. The synthesized Ag nanoparticles were added to the glaze used in the ceramic structures and mixed homogeneously. The homogeneous mixture was characterized by transmission electron microscopy (TEM), X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) techniques. The SPR band of the synthesized biogenic Ag NPs was observed as 422 nm during the reaction at mom temperature. TEM analysis revealed that Ag NPs were spherical and a particle size between 10 and 20 nm. Furthermore, the antibacterial properties of the homogeneous mixture (Ag NPs and glaze) were tested against Escherichia coli (E. coli, Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Biogenic Ag NPs at a concentration of 100 mu g/ml were observed to have 90%, 75%, 75%, 80% lethal effects against S. aureus, MRSA, B. Subtilis, and E. Coli bacteria, respectively. The antibacterial results of Ag NPs obtained with the help of Camellia sinensis show that they may have potential application and development in the field of ceramics. In addition, the antibacterial activity of commercially available antibiotics and the prepared Ag NPs were analyzed in ceramic glazes.Correction Green Synthesis and Characterization of Camellia Sinensis Mediated Silver Nanoparticles for Antibacterial Ceramic Applications (Vol 250, 123037, 2020)(Elsevier Science Sa, 2021) Gol, Fatma; Aygun, Aysenur; Seyrankaya, Abdullah; Gur, Tugba; Yenikaya, Cengiz; Sen, FatihArticle Green Synthesis of Palladium Nanoparticles: Preparation, Characterization, and Investigation of Antioxidant, Antimicrobial, Anticancer, and Dna Cleavage Activities(Wiley, 2021) Gulbagca, Fulya; Aygun, Aysenur; Gulcan, Mehmet; Ozdemir, Sadin; Gonca, Serpil; Sen, FatihGreen synthesis is considered to be one of the most suitable method because it enhances the therapeutic effects of palladium nanoparticles (Pd NPs). In this study, various biological activities such as antimicrobial, anticancer, antioxidant, and DNA cleavage activities of Urtica-mediated green synthesizing Pd NPs were investigated. The synthesized Pd NPs were characterized by using UV-vis, XPS, FT-IR, TEM, and XRD analyses. As a result of the TEM analysis of Pd NPs, the mean particle size was found to be 7.44 +/- 1.94 nm, and this result was supported by XRD analysis. The maximum DPPH scavenging activity was determined as 79.6% at 500 mg/L. The newly green synthesized Pd NPs exhibited high antimicrobial activity to gram-negative bacteria than gram-positive bacteria. Urtica-mediated green synthesized Pd NPs also showed double strain DNA cleavage activity. For the cytotoxic effects of Pd NPs, the MDA-MB-231 breast cancer cell line, HT-29 colon cancer cell line, Mia Paca-2 human pancreatic cancer cell line, and healthy cell line L929-Murine fibroblast cell line were used. IC50 values of Pd NPs against MDA-MB-231, HT-29, and MIA PaCa-2 cancer cell lines were calculated as 31.175, 20.383, and 29.335 mu g/ml, respectively. No significant cytotoxic effect was observed in the healthy lines L929.Article Highly Active Pdpt Bimetallic Nanoparticles Synthesized by One-Step Bioreduction Method: Characterizations, Anticancer, Antibacterial Activities and Evaluation of Their Catalytic Effect for Hydrogen Generation(Pergamon-elsevier Science Ltd, 2023) Aygun, Aysenur; Gulbagca, Fulya; Altuner, Elif Esra; Bekmezci, Muhammed; Gur, Tugba; Karimi-Maleh, Hassan; Sen, FatihMetallic nanoparticles (MNPs) have important applications in medicine and technology. Bimetallic NPs, which are among the metallic nanoparticles, are of great interest due to their properties. An innovative method by green synthesis has been developed to obtain bimetallic NPs. Aromatic plants are used in this synthesis method. One of the plants used for green synthesis is Nigella sativa and it has a unique place among plants for use as medicine. In this study, the synthesis of Palladium-Platinum bimetallic nanoparticles (PdPt NPs) and the catalytic, antibacterial, and anticancer activity of synthesized PdPt NPs by green synthesis method using Nigella sativa seed extract are reported. The synthesized PdPt NPs were characterized by Fourier Transform Infrared Spectrophotometer (FTIR), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and UV-Vis spectrom-etry techniques. The catalytic activity of PdPt NPs was determined by performing sodium borohydride (NaBH4) hydrolysis experiments. According to the results obtained, Turnover Frequency (TOF), activation energy, entropy, and enthalpy values were found to be 1664.76 h-1, 13.93 kJ/mol,-119.02 J/mol.K, and 11.43 kJ/mol, respectively. It was determined that PdPt NPs are highly effective catalysts for hydrogen production. PdPt NPs (200 mu g/mL) were determined to have antibacterial activity of 57.58%, 64.42%, 48.68%, and 58.77% against Escherichia coli, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, and Bacillus subtilis bacteria, respectively. In addition, the cytotoxic effects of PdPt NPs, MTT against human breast cancer cell line (MDA-MB-231), human endometrial carcinoma cell line (Ishikawa, ISH), human cervical cancer cell line (HeLa), L929-Murine fibroblast cell line test, and IC50 values were calculated. The IC50 values of PdPt NPs applied against MDA-MB-231, ISH, and HeLa cancer cell lines were calculated as 9.1744 +/- 1.566 mu g/mL, 12.2431 +/- 1.132 mu g/ mL, 18.1963 +/- 1.730 mu g/mL, respectively. No significant cytotoxic effect was observed in healthy L929-murine fibroblasts. Green synthesis of PdPt NPs was determined to have significant advantages over chemical approaches. The biogenic PdPt NPs synthesized in this study suggest the design of bio-based bimetallic catalysts with high catalytic perfor-mance to prevent environmental pollution. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Article Microwave-Assisted Fabrication of Agruni Trimetallic Nps With Their Antibacterial Vs Photocatalytic Efficiency for Remediation of Persistent Organic Pollutants(Springer, 2024) Kocak, Yilmaz; Tiri, Rima Nour Elhouda; Aygun, Aysenur; Meydan, Ismet; Bennini, Nihed; Karahan, Tugba; Sen, FatihAntibiotic-resistant bacteria have long been a concern and become a public health problem around the world. Therefore, various methods are being tried to develop new-generation therapeutic agents against antibiotic resistance. One of these methods is biogenic nanoparticle (NP) synthesis. Besides the antibacterial properties of biogenic NPs, it also contributes to the solution of the environmental toxic waste problem. In this study, we present a more environmentally friendly microwave approach to produce AgRuNi trimetallic nanoparticles (AgRuNi TNPs). The structural properties and chemical composition of TNPs were characterized by several techniques such as XRD, TEM, FTIR etc. The average particle size of AgRuNi TNPs was found to be 3.61 +/- 0.63 nm. For the removal of a persistent organic pollutant, such as methyl orange (MO) under solar irradiation, the photocatalytic activity of AgRuNi TNPs to remove MO dye was examined. The photodegradation percentage (%) of AgRuNi TNPs against MO dye after 300 min was calculated as 92%. Additionally, the antibacterial efficacy of the generated nanoparticles against gram (+) and gram (-) was evaluated. Overall, the current method to produce AgRuNi TNPs is based on the principles of green chemistry and pharmaceutical technology and shows promise for the creation of highly effective photocatalytic systems and the development of drug delivery systems to generate antibacterial activity.Article A New Highly Active Polymer Supported Ruthenium Nanocatalyst for the Hydrolytic Dehydrogenation of Dimethylamine-Borane(Elsevier Science Bv, 2019) Karatas, Yasar; Aygun, Aysenur; Gulcan, Mehmet; Sen, FatihHerein, we report a highly active Ru@PVP nanocatalyst for the hydrolytic dehydrogenation of dimethylamine-borane under room conditions. The Ru@PVP nanocatalyst was readily prepared, stabilized and used effectively in the catalytic dehydrogenation reaction of dimethylamine-borane in water at room conditions. The prepared Ru@PVP nanocatalyst was characterized using advanced analytical methods such as XPS, XRD, HR-TEM, etc. The characterization analyzes shown that Ru metals are uniformly distributed on the PVP support surface; the mean particle of catalyst size was found to be 2.78 +/- 0.16 nm. The catalytic test showed that DMAB had a high catalytic activity with Ru@PVP in aqueous solutions, and TOF value was found to be 2500.52 h(-1) for hydrolytic dehydrogenation of DMAB at room conditions. The study also included kinetic data such as activation parameters for different temperatures, catalyst concentration, and substrate concentration experiments. (C) 2019 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.Article One-Step Synthesized Biogenic Nanoparticles Using Linum Usitatissimum: Application of Sun-Light Photocatalytic, Biological Activity and Electrochemical H2o2 Sensor(Academic Press inc Elsevier Science, 2023) Karimi, Fatemeh; Tiri, Rima Nour Elhouda; Aygun, Aysenur; Gulbagca, Fulya; Ozdemir, Sadin; Gonca, Serpil; Sen, FatihThis study aimed to synthesize Ag NPs as a green catalyst for photocatalytic activity and to examine their bio-logical activities. It was determined that they have high activity in catalytic and biological activities. The green synthesis which is an environmentally friendly and inexpensive method was used to synthesize Ag-NPs using Linum usitatissimum as a reducing agent. Transmission electron microscopy (TEM), infrared to Fourier transform infrared (FTIR) spectroscopy, UV-Visible (UV-Vis) spectroscopy, and X-ray diffraction (XRD) were used to characterize the Ag NPs. In UV-Vis examination, Ag-NPs had intense peaks in the 435 nm region. The anti-bacterial activity of Ag NPs was investigated, and Ag NPs showed a high lethal effect against S. aureus, E. coli, B. subtilis, and MRSA. In addition, Ag NPs were tested for anticancer activity against the HT-29 colon cancer cell line, MDA-MB-231 breast cancer cell line, healthy cell line L929-Murine Fibroblast cell Lines, and MIA PaCa-2 human pancreatic cancer cell line at various concentrations (1-160 mu g/mL) and showed a high anti-cancerogenic properties against MDA-MB-231 cells. Ag NPs showed the ability of DNA cleavage activity. Also, the antioxidant activity of Ag NPs against DPPH was found to be 80% approximately. Furthermore, the pho-tocatalytic activity of Ag NPs against methylene blue (MB) was determined to be 67.13% at the 180th min. In addition, it was observed that biogenic Ag NPs have high electrocatalytic activity for hydrogen peroxide (H2O2) detection. In the sensor based on Ag NPs, linearity from 1 mu M to 5 mu M was observed with a detection limit (LOD) of 1.323 mu M for H2O2. According to these results, we conclude that the biogenic Ag NPs synthesized using Linum usitatissimum extract can be developed as an efficient biological agent as an antibacterial and anticancer also can be used as a photocatalyst for industrial wastewater treatment to prevent wastewater pollution.Article Phyto-Mediated Synthesis of Nanoparticles and Their Applications on Hydrogen Generation on Nabh4, Biological Activities and Photodegradation on Azo Dyes: Development of Machine Learning Model(Pergamon-elsevier Science Ltd, 2022) Lin, Junqing; Gulbagca, Fulya; Aygun, Aysenur; Tiri, Rima Nour Elhouda; Xia, Changlei; Van Le, Quyet; Vasseghian, YasserThis work reports the synthesis of the silver-platinum bimetallic nanoparticles (N@Pt-Ag BNPs) reduced by an ethanolic extract of black seed (Nigella sativa, N) using the green synthesis method, these nanoparticles show a great antibacterial, anticancer, and catalytic activity. The characterization of physicochemical properties of AgPt BNP was carried out using UV-visible spectroscopy (Uv-vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Transmission electron microscope (TEM) analysis. The structural morphology shows that the N@Pt-Ag BNPs are spherical particles with a diameter of 5.6 nm. The cytotoxic effects of N@Pt-Ag BNPs were examined by MTT test in human breast cancer, human colon cancer, human pancreatic cancer, L929Murine fibroblast cells. N@Pt-Ag BNPs have been observed to be much more effective in breast cancer cell lines. The cytotoxic effect of N@Pt-Ag BNPs against healthy L929-murine fibroblast cell lines was not observed. Also, high antibacterial activity on each of the bacteria Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), Methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus (S. aureus), where we note that most strains of E. coli and S. aureus were damaged with a 73% percentage, 67% bacterial inhibition respectively. The results of the catalytic activities of N@Pt-Ag BNPs were obtained by performing the hydrolysis experiments of sodium borohydride (NaBH4). According to the results obtained, TOF, enthalpy, entropy, and activation energy, values were found to be 2497.14 h(-1), 13.52 kJ/mol,-137.47 J/mol.K, 16.02 kJ/mol, respectively. N@Pt-Ag BNPs were found to be highly effective catalysts for hydrogen production which this was also confirmed by the machine learning model. The photocatalytic activity of N@Pt-Ag BNPs was tested against methylene blue (MB) dye and the highest activity was found as 80%.Article Production of Plant-Based Zno Nps by Green Synthesis; Anticancer Activities and Photodegradation of Methylene Red Dye Under Sunlight(Springer Heidelberg, 2024) Demir, Canan; Aygun, Aysenur; Gunduz, Meliha Koldemir; Altinok, Bahar Yilmaz; Karahan, Tugba; Meydan, Ismet; Sen, FatihDischarging wastewater from factories into streams without cleaning them causes environmental pollution and threatens the health of living beings. The photocatalysis method developed for easy, fast, and low-cost wastewater cleaning attracts considerable attention and therefore needs to synthesize efficient photocatalysts. In addition, the synthesized non-toxic catalysts can be tested as anticancer agents and may be suitable candidates to solve the issues facing cancer therapy today. Therefore, the synthesis of biogenic nanomaterials has gained importance. Plant-mediated green synthesis stands out in the simple, fast, cheap, and non-toxic production of nanoparticles (NPs). NPs produced by green synthesis are frequently used in biological applications such as anticancer and photocatalyst applications for cleaning wastewater. In this article, zinc oxide nanoparticles (ZnO NPs) were obtained using Zingiber officinale extract. The plant extract functions as a reducing, capping, and stabilizing agent in the green production of ZnO NPs. The synthesis of ZnO NPs was characterized using UV-Vis spectroscopy, FTIR, XRD, and TEM. TEM results show that ZnO NPs have sizes in the range of 10-45 nm. The anticancer activity of ZnO NPs was examined against HT29 (ATCC (R) HTB-38 (TM)) colorectal cancer cell line and HepG2 (ATCC (R) HB-8065 (TM)) hepatocellular cancer cell line by MTT assay. The IC50 values of ZnO NPs against HT29 and HepG2 cancer cell lines after 48 h were calculated as 20 mu g/mL and 45 mu g/mL, respectively. Additionally, the photocatalytic activity of ZnO NPs was tested against methylene red azo dye under sunlight and 87.96% (pH 7) photodegradation was obtained at the end of the 120th minute. It is predicted that ZnO NPs can be used effectively in both anticancer studies and environmental improvement.Article Synthesis and Characterization of Reishi Mushroom-Mediated Green Synthesis of Silver Nanoparticles for the Biochemical Applications(Elsevier, 2020) Aygun, Aysenur; Ozdemir, Sadin; Gulcan, Mehmet; Cellat, Kemal; Sen, FatihIn recent years, the synthesis of nanoparticles via biological processes has attracted considerable attention. The use of plants and plant extracts is one of the most preferred methods for biological synthesis due to their rich biologically active metabolites. In this study, silver nanoparticles (Ag NPs) were synthesized using reishi mushroom (Ganoderma lucidum) extract. Different analytical techniques including X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectroscopy, and Fourier Transform Infrared Spectrophotometer (FTIR) were used for the characterization of Ag NPs. UV-vis spectrum exhibited a broad absorption peak between 400-460 nm which indicates the existence of Ag NPs. TEM images showed Ag NPs are spherical with a diameter range of 15-22 nm. In addition, it is shown that Ag NPs form a face-centered cubic structure according to XRD characterization technique. The antioxidant activity towards to 1-Diphenyl-2-picrylhydrazyl (DPPH) was also studied. The highest DPPH scavenging percentage was recorded as 76.45% at 250 mg/L. The DNA cleavage activity results indicated that the green Ag NPs caused single strain DNA cleavage activity for 30 and 60 min at 50 and 100 mg/L, respectively. The Ag NPs antimicrobial activity was also investigated and results recorded as minimum inhibition concentration (MIC). Ag NPs showed a strong antibacterial effect against gram-positive (S. aureus, E. hirae, B. cereus) and gram-negative (E. coli, P. aeruginosa, L. pneumophila subsp. Pneumophila) bacteria. Furthermore, Ag NPs have also been shown to have a high antifungal effect against C. albicans fungus. (C) 2019 Elsevier B.V. All rights reserved.