Browsing by Author "Bakan, Buket"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Deciphering the Biochemical Similarities and Differences Among Mouse Embryonic Stem Cells, Somatic and Cancer Cells Using Atr-Ftir Spectroscopy(Royal Soc Chemistry, 2018) Guler, Gunnur; Acikgoz, Eda; Yavasoglu, N. Ulku Karabay; Bakan, Buket; Goormaghtigh, Erik; Aktug, HuseyinCellular macromolecules play important roles in cellular behaviors and biological processes. In the current work, cancer (KLN205), normal (MSFs) and mouse embryonic stem cells (mESCs) are compared using ATR-FTIR spectroscopy. Modifications in the composition, concentration, structure and function-related changes in the cellular components were deciphered using the infrared spectra. Our results revealed that cancer and embryonic stem cells are very similar but highly different from the normal cells based on the spectral variations in the protein, lipid, carbohydrate and nucleic acid components. The longest lipid acyl chains exist in mESCs, while cancer cells harbor the lowest lipid amount, short lipid acyl chains, a high content of branched fatty acids and thin cell membranes. The highest cellular growth rate and accelerated cell divisions were observed in the cancer cells. However, the normal cells harbor low nucleic acid and glycogen amounts but have a higher lipid composition. Any defect in the signaling pathways and/or biosynthesis of these cellular parameters during the embryonic-to-somatic cell transition may lead to physiological and molecular events that promote cancer initiation, progression and drug resistance. We conclude that an improved understanding of both similarities and differences in the cellular mechanisms among the cancer, normal and mESCs is crucial to develop a potential clinical relevance, and ATR-FITR can be successfully used as a novel approach to gain new insights into the stem cell and cancer research. We suggest that targeting the cellular metabolisms (glycogen and lipid) can provide new strategies for cancer treatment.Article Toxicological Investigation of Bisphenol a and Its Derivates on Human Breast Epithelial (mcf-10a) Cells(Pergamon-elsevier Science Ltd, 2025) Bakan, Buket; Kaptaner, Burak; Tokmak, Merve; Aykut, Handan; Mendil, Ali Sefa; Ozkaraca, MustafaBisphenols can enter the body, where they have potential adverse effects on human health, via different routes such as inhalation, dermally or orally. They are known as endocrine disrupting chemicals that activate signaling pathways by mimicking the estrogen actions. In this study, we aimed to investigate effects of bisphenol A (BPA), and its analogues bisphenol F (BPF) and bisphenol S (BPS) on MCF-10A cells and their impact mechanisms on autophagy, apoptosis and reduced glutathion levels. In comparison of the cytotoxic effects, while BPF and BPS showed dose-dependent high toxicity on MCF-10A cells, BPA exerted cytotoxic effects only at the highest doses. Caspase 3 and LC3B are strongly and positively correlated with BPF exposures while significant changes were not detected in the BPA and BPS applied groups. It was clearly observed that BPF and BPS displayed more toxic effects than BPA on human breast cells that are important targets for the bisphenols. These findings provide data for understanding the mechanisms for BPA, BPF and BPS-induced toxicity on human breast cells.