Browsing by Author "Bayram, Ismail"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Distributed Wireless Liquid Level Control of a Process Simulator Over a Network(Springer, 2018) Bayram, Ismail; Hapoglu, Hale; Aldemir, AdnanIn a process simulator, the distributed wireless liquid level control experiments have been performed by using the generalized predictive control algorithm. The wireless local area network was established with antennas between process simulator in Unit Operations Laboratory and the computer in Process Control Laboratory. We performed the online wireless experiments with MATLAB/Simulink program. Data transfer during the wireless experiments were carried out using radio waves at a frequency of 2.4 GHz. Experiments on the same conditions were achieved by three certain values of control weighting factor in the controller algorithm, whilst the changes in valve opening and liquid level with time were monitored. In all experiments performed with the distributed control system, the control valve opening is fixed with very small oscillations after a sudden increase in the beginning. We obtained the best liquid level control response to different set point changes for the same set of controller tuning values. The Integrated Square of the Error and the Integrated Absolute of the Error values were chosen as performance criteria. The distributed wireless liquid level control was effectively realized to the process simulator and it is recommended for industrial applications.Article Impact of Robust Error Control on Fluid Level by Wireless Network Applications(Gazi Univ, 2018) Bayram, Ismail; Hapoglu, Hale; Aldemir, AdnanThe paper presents a process simulator developed with wireless process control purpose and antennas and modules for wireless communication applications. The impact of robust error control code onwireless liquid level control experiments is investigated by means of three tuning coefficients of the proportional integral derivative actionswhich are initially determined by using nonparametric methods. The initial controller tuning coefficients were determined using the process reaction curve which sketched the data obtained in response to a step change by wireless communication. The well-tuned control parameters were assessed by means of a MATLAB graphical tool (SISO). To determine the bias values of the process simulator, an initial steady state was obtained and the system output was monitored at the constant control valve openness (10%) for 100s. At the end of 100 seconds, the control key in MATLAB/ Simulink block diagram was changed and the control algorithm was activated and different set point changes were given to the system at the same time and the effect of the parameters was observed. It was seen that the liquid level tended to level off around the desired set values in the wireless control experiments performed to follow different set points by using the wireless robust error control with well-tuned parameters. The proposed wireless control and communication networkperformances were compared with the integral of squared error (ISE) and the integral of absolute error (IAE) criteria at various fluid levels.