Browsing by Author "Caliskan, Umut"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article The Effect of Artificial Aging on the Impact Behavior of Sic Nanoparticle-Glass Fiber-Reinforced Polymer Matrix Composites(Wiley, 2022) Kosedag, Ertan; Caliskan, Umut; Ekici, RecepThe low-velocity impact behavior of SiC nanoparticle-glass fiber-reinforced polymer matrix composites (PMC) in terms of different weight fraction of nanoparticle, artificial aging time, and impact energy was investigated in this article. In this context, silicon carbide (SiC-70 nm) ceramic nanoparticle in weight fractions of 0%, 0.1%, 1%, 2%, 3% filled glass fiber-reinforced PMCs were produced by vacuum infusion technique. The specimens were artificially aged in 0, 750, and 1500 h, 85% relative humidity and 70 degrees C in air conditioning cabinet. The after-impact damage regions were obtained using ultrasonic scanning technique for three different impact energies of 10, 20, and 30 J. The weight of specimens was measured at certain periods during aging and the weight change was examined. As the weight fraction and aging time were increased, the impact resistance of specimens decreased. At the beginning of aging period, the weight of specimens increased; however, the increase in weight decreased over time. Ultrasonic scanning results showed that the damage geometry changed and increasing discontinuity with increasing weight fraction and artificial aging time.Article Effect of Sic and Graphene Nanoparticles on the Mechanical Properties of Carbon Fiber-Reinforced Epoxy Composites(Wiley, 2023) Kosedag, Ertan; Ekici, Recep; Yildiz, Nail; Caliskan, UmutThis study experimentally investigates the mechanical properties of carbon fiber reinforced epoxy composites (CFRECs) filled with Graphene (Gr) and Silicon Carbide (SiC) nanoparticles. Gr and SiC nanoparticle filled CFREC plates at 0%, 0.5%, 1%, and 2% weight ratios were fabricated using a vacuum infusion technique from unidirectional carbon fiber fabric with both 0 and 90 & DEG; fiber orientation. According to ASTM standards, tensile, compression, and three point bending tests were performed to determine the effects of additive type and weight ratios. CFRECs with Gr additive exhibit improved tensile properties compared to the unfilled composites, especially at higher filler contents and at specific fiber orientations. Also, the Gr additive showed a better improvement in the tensile behavior of the CFRECs than the SiC additive. In general, it was found that the elastic modulus values of nanoparticle additive samples were higher than that of the unfilled composite material in both fiber orientations. Except for the 0.5% SiC ratio with 0 & DEG; fiber orientation, the particle added nanocomposites did not exceed the value of the unfilled composite and did not make a positive effect on the compressive strength. It has been observed that Gr additives give more positive results on the bending strength of CFRECs than SiC, especially at a 2% weight ratio. Highlights center dot Effects of nanoparticle types on mechanical properties of CFRECs were compared. center dot Weight ratio effects on the properties of nanoparticle-filled CFRECs were studied. center dot The load-bearing capacity decreased as the additive ratio increased. center dot Additives and ratios should be carefully selected for the intended applications. center dot Overall, presence Gr resulted in enhanced properties much prominently for composites.