Browsing by Author "Cukur, Deniz"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article 500,000 Years of Environmental History in Eastern Anatolia: the Paleovan Drilling Project(Copernicus Gesellschaft Mbh, 2012) Litt, Thomas; Anselmetti, Flavio; Baumgarten, Henrike; Beer, Juerg; Cagatay, Namik; Cukur, Deniz; Wonik, ThomasInternational Continental Scientific Drilling Program (ICDP) drilled a complete succession of the lacustrine sediment sequence deposited during the last similar to 500,000 years in Lake Van, Eastern Anatolia (Turkey). Based on a detailed seismic site survey, two sites at a water depth of up to 360 m were drilled in summer 2010, and cores were retrieved from sub-lake-floor depths of 140 m (Northern Basin) and 220 m (Ahlat Ridge). To obtain a complete sedimentary section, the two sites were multiple-cored in order to investigate the paleoclimate history of a sensitive semi-arid region between the Black, Caspian, and Mediterranean seas. Further scientific goals of the PALEOVAN project are the reconstruction of earthquake activity, as well as the temporal, spatial, and compositional evolution of volcanism as reflected in the deposition of tephra layers. The sediments host organic matter from different sources and hence composition, which will be unravelled using biomarkers. Pathways for migration of continental and mantle-derived noble gases will be analyzed in pore waters. Preliminary 40Ar/39Ar single crystal dating of tephra layers and pollen analyses suggest that the Ahlat Ridge record encompasses more than half a million years of paleoclimate and volcanic/geodynamic history, providing the longest continental record in the entire Near East to date.Article Evidence of Extensive Carbonate Mounds and Sublacustrine Channels in Shallow Waters of Lake Van, Eastern Turkey, Based on High-Resolution Chirp Subbottom Profiler and Multibeam Echosounder Data(Springer, 2015) Cukur, Deniz; Krastel, Sebastian; Cagatay, M. Namik; Damci, Emre; Meydan, Aysegul Feray; Kim, Seong-PilIn Lake Van of eastern Turkey, the fourth largest soda lake in the world, high-resolution subbottom profiles and bathymetric data acquired in 2004 and 2012 revealed several hundreds of topographic mounds in shallow waters (< 130 m) off the historical town of Adilcevaz in the northern lake sector. These structures are characterized by strong top reflections of transparent internal character, and are 10-300 m wide and 0.5-20 m high. Consistent with previous work, they are interpreted as carbonate mounds formed by precipitation from CO2-rich groundwater discharge into the highly alkaline lake. Their age remains to be determined but their alignment along faults suggests tectonic control on their growth. Several sublacustrine channel networks were observed on the eastern shelf of the lake, which connects with onshore rivers. The channels are up to 500 m wide and 20 m deep, and plausibly were formed by fluvial processes during the major lake level drop reported to have occurred by 14 ka in earlier publications. Erosion is common on the channel walls flanked by levees. The channels are presently inactive or abandoned. At a water depth of 100 m, they all merge into a single larger channel; this channel has a sinuous course initially trending southwestward and then northwestward at a water depth of 130 m. Numerous closely spaced small channels (similar to 10-200 m wide, 1-10 m deep) are also seen on the eastern lacustrine shelf, interpreted as denditric and parallel channel systems formed during lake level fall terminating at similar to 14 ka. Bathymetric data provide evidence of numerous sublacustrine canyons on the western slope of the lake's northern basin, most likely remnants of relict rivers formed during this lowstand.Article Seismic Evidence of Shallow Gas From Lake Van, Eastern Turkey(Elsevier Sci Ltd, 2013) Cukur, Deniz; Krastel, Sebastian; Tomonaga, Yama; Cagatay, M. Namik; Meydan, Aysegul FerayAnalysis of multi-channel seismic reflection and chirp data from Lake Van (eastern Turkey) reveals various shallow gas indicators including seismic chimneys, enhanced reflections, bright spots, mud volcanoes, pockmarks, and acoustic blanking. The enhanced reflections, suggesting the presence of free gas, are most dominant and observed at more than 200 locations. They are characterized by very-high amplitude reflections and occur in both deep and shallow sedimentary sections. Some enhanced reflections are accompanied by very subtle seafloor expressions such as mounds, which may suggest active venting activity. Seismic chimneys or columnar zones of amplitude blanking have been observed in much of the surveyed area. Seismic chimneys in the study area cannot be associated with any known faults that would act as migration pathways for deep fluids. This suggests that the observed structures in Lake Van sediments allow the preferential emission of gases which might be for a large share of biogenic origin. The acoustic blanking, characterized by transparent or chaotic seismic facies, is seen in the eastern part of the lake. The lakeward edge of the acoustic blanking largely coincides with the 100 m water depth contour, indicating that (past) changes of the hydrostatic pressure may be responsible for the distribution of these anomalies. Mound-like features, interpreted as mud volcanoes, occur in a few locations. The presence of these features may suggest active gas emission. Very strong amplitude anomalies or bright spots with negative polarity, indicating gas-charged zones, are also seen in a number of locations. Pockmarks are observed only in the northeastern part of the study area. The scarce occurrence of pockmarks in the study area might be ascribed to a higher permeability of the lake sediments or to the absence of the substrate/reservoir providing the critical mass of gases necessary to produce such features. Turbidites, tephra layers, and deltaic deposits have the potential to provide ideal conditions to allow the sediments to act as a gas reservoir. (c) 2013 Elsevier Ltd. All rights reserved.Article Seismic Stratigraphy of Lake Van, Eastern Turkey(Pergamon-elsevier Science Ltd, 2014) Cukur, Deniz; Krastel, Sebastian; Schmincke, Hans-Ulrich; Sumita, Mari; Cagatay, M. Namik; Meydan, Aysegul Feray; Stockhecke, MonaMore than 1500 km of multi-channel seismic reflection profiles combined with ICDP (International Continental Scientific Drilling Program) drilling data, provide important insights into the stratigraphic evolution of Lake Van, eastern Turkey. Three major basins (Tatvan, Northern and the Deveboynu basins) comprise the main lake basin and are separated by morphological highs (Ahlat ridge and Northern ridge). Moreover, NE SW faults, parallel to the general tectonic lineament of the area, dominate the entire basin and are in charge of creating graben and half-graben structures. Well-developed prograding deltaic sequences on top of the basement were recognized by seismic stratigraphy analysis. Most likely, they formed during the initial flooding of Lake Van similar to 600 ka. The Tatvan basin sediments are dominated by mass-flow deposits of various origins alternating with undisturbed lacustrine sediments including distinct tephra layers. Faulting along the Tatvan basin margins may have triggered margin-wide slope failures. Ahlat ridge started to form between ca 340 ka-290 ka. Since then, Ahlat ridge was sheltered from major mass-flows due to its elevation. Hence, slow lacustrine sedimentation has prevailed throughout lake history on Ahlat ridge, which was the location of the main drill site during the ICDP. Several lake level fluctuations are evident on the eastern slope area but the deep basins were permanently covered by water. A significant lake-level low stand (ca 600 ka BP) was found at similar to 610 m below present lake level. The setting of the lake changed at about 30 ka. Tectonic activity appears to have waned significantly as the mass-transport deposition decreased across the Tatvan basin while normal undisturbed lacustrine sedimentation prevailed. A different setting is found in the Northern basin from ca 90 ka to Present, especially due to the strong influx of mostly volcaniclastic turbidites causing sedimentation rates to be about 3.5 times higher (drill Site 1), than at Site 2 (Ahlat ridge). (C) 2014 Elsevier Ltd. All rights reserved.Article Structural Characteristics of the Lake Van Basin, Eastern Turkey, From High-Resolution Seismic Reflection Profiles and Multibeam Echosounder Data: Geologic and Tectonic Implications(Springer, 2017) Cukur, Deniz; Krastel, Sebastian; Tomonaga, Yama; Schmincke, Hans-Ulrich; Sumita, Mari; Meydan, Aysegul Feray; Horozal, SenayThe structural evolution of Lake Van Basin, eastern Turkey, was reconstructed based on seismic reflection profiles through the sedimentary fill as well as from newly acquired multibeam echosounder data. The major sub-basins (Tatvan Basin and Northern Basin) of Lake Van, bound by NE-trending faults with normal components, formed during the past similar to 600 ka probably due to extensional tectonics resulting from lithospheric thinning and mantle upwelling related to the westward escape of Anatolia. Rapid extension and subsidence during early lake formation led to the opening of the two sub-basins. Two major, still active volcanoes (Nemrut and Suphan) grew close to the lake basins approximately synchronously, their explosive deposits making up > 20 % of the drilled upper 220 m of the ca. 550-m-thick sedimentary fill. During basin development, extension and subsidence alternated with compressional periods, particularly between similar to 340 and 290 ka and sometime before similar to 14 ka, when normal fault movements reversed and gentle anticlines formed as a result of inversion. The similar to 14 ka event was accompanied by widespread uplift and erosion along the northeastern margin of the lake, and substantial erosion took place on the crests of the folds. A series of closely spaced eruptions of Suphan volcano occurred synchronously suggesting a causal relationship. Compression is still prevalent inside and around Lake Van as evidenced by recent faults offsetting the lake floor and by recent devastating earthquakes along their onshore continuations. New, high-resolution bathymetry data from Lake Van reveal the morphology of the Northern Ridge and provide strong evidence for ongoing transpression on a dextral strike-slip fault as documented by the occurrence of several pop-up structures along the ridge.Article The Structural Elements and Tectonics of the Lake Van Basin (Eastern Anatolia) From Multi-Channel Seismic Reflection Profiles(Pergamon-elsevier Science Ltd, 2017) Toker, Mustafa; Sengor, A. M. Celal; Schluter, Filiz Demirel; Demirbag, Emin; Cukur, Deniz; Imren, Caner; Niessen, FrankThis study analyzed multi-channel seismic reflection data from Lake Van, Eastern Anatolia, to provide key information on the structural elements, deformational patterns and overall tectonic structure of the Lake Van basin. The seismic data reveal three subbasins (the Tatvan, northern and Ahlat subbasins) separated by structural ridges (the northern and Ahlat ridges). The Tatvan basin is a tilted wedge-block in the west, it is a relatively undeformed and flat-lying deep basin, forming a typical example of strike-slip sedimentation. Seismic sections reveal that the deeper sedimentary sections of the Tatvan basin are locally folded, gently in the south and more intensely further north, suggesting a probable gravitational "wedge-block" instability, oblique to the northern margin. The northern subbasin, bounded by normal oblique faults, forms a basin-margin graben structure that is elongated in a northeast-southwest direction. The east-west trending Ahlat ridge forms a fault-wedged sedimentary ridge and appears to offset by reverse oblique faults forming as a push-up rhomb horst structure. The Ahlat subbasin is a fault wedged trough fill that is elongated in the west-east direction and appears as a horst-foot graben formed by the normal oblique faults. The northeast-southwest directed northern ridge is a faulted crestal terrace of a sublacustrine basement block. Its step-like morphology, in response to the downfaulting of the Tatvan basin, as well as its backthrusted appearance, indicates the normal oblique nature of the bounding faults. The lacustrine shelf and slope show distinctive stratigraphic features; progradational deltas, submerged fluvial channels, distorted and collapsed beddings and soft sediment deformation structures, characterizing a highly unstable nature of shelf caused by strong oblique faulting and related earthquakes. The faulting caused uplift of the carpanak spur zone, together with the northeastern Erek delta, deformation of deltaic structures and subsequently exposing the shelf and slope areas. The exposed areas are evident in the angular unconformity surface of the carpanak basement block with the northeastern Erek delta and thinned sediments. The uplift resulted in the asymmetric depositional emplacement of the southeastern delta that is controlled by a series of ramp anticlines/low angle reverse faults. The Deveboynu subbasin and Varis spur zone form wide fault-controlled depressions with thick sediments that are elongated in the north-south direction. These subbasins appear as a small pull-apart boundary formed by normal oblique faults at the western end of the southeastern delta. (C) 2017 Elsevier Ltd. All rights reserved.