Browsing by Author "De, N."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Multiplicative Degree Based Topological Indices of Some Chemical Structures in Drug(Universidad Catolica del Norte, 2020) Canca, M.; Mondal, S.; De, N.; Pal, A.In quantitative structure property relationship analysis (QSPR) and quantitative structure property relationship analysis (QSAR) the correlation between different properties/activities and molecular structure of chemical compounds is investigated which is helpful in drug design. Topological index is an useful tool to predict different physical and chemical properties of molecule by collecting information from the molecular graph. In this article, multiplicative degree based topological indices are obtained for some chemical structures widely used in drug design, especially in anticancer drug discovery. To visualize the indices, the results are interpreted graphically. © 2020 Murat Cancan, Sourav Mondal, Nilanjan De, and Anita Pal. This is an open acess article distributed under the terms of the Creative Commons License, which permits unrestricted use and distribution provided the original author and source are credited.Article On Reformulated Narumi-katayama İndex(Universidad Catolica del Norte, 2020) Cancan, M.; De, N.; Alaeiyan, M.; Farahani, M.R.A graph is a mathematical model form by set of dots for vertices some of which are connected bylines named as edges. A topological index is a numeric value obtained from a graph mathematically which characterize its topology. The reformulated Narumi-Katayama index of a graph G is defined as the product of edge degrees of all the vertices of G which is introduced in 1984, to used the carbon skeleton of a saturated hydrocarbons. The degree of an edge is given by the sum of degrees of the end vertices of the edge minus 2. In this paper, we compute the reformulated Narumi-Katayama index for different graph operations. copyright © Murat Cancan, Nilanjan De, Mehdi Alaeiyan, and Mohammad Reza Farahani.Article On Some Degree Based Topological Indices of Mk-Graph(Taylor and Francis Ltd., 2020) De, N.; Cancan, M.; Alaeiyan, M.; Farahani, M.R.A topological index is a real number which is same under graph isomorphism and it is derived from a graph by mathematically. In chemical graph theory, a molecular graph is a simple graph having no loops and multiple edges in which atoms and chemical bonds are represented by vertices and edges respectively. Topological indices defined on these chemical molecular structures can help researchers better understand the physical features, chemical reactivity, and biological activity. In this paper, we compute general expressions of some degree based topological indices of a special graph named as mk-graph for some positive integer k. © 2020 Taru Publications.