Browsing by Author "Diez, Isabel De La Torre"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Data Oversampling and Imbalanced Datasets: an Investigation of Performance for Machine Learning and Feature Engineering(Springernature, 2024) Mujahid, Muhammad; Kina, Erol; Rustam, Furqan; Villar, Monica Gracia; Alvarado, Eduardo Silva; Diez, Isabel De La Torre; Ashraf, ImranThe classification of imbalanced datasets is a prominent task in text mining and machine learning. The number of samples in each class is not uniformly distributed; one class contains a large number of samples while the other has a small number. Overfitting of the model occurs as a result of imbalanced datasets, resulting in poor performance. In this study, we compare different oversampling techniques like synthetic minority oversampling technique (SMOTE), support vector machine SMOTE (SVM-SMOTE), Border-line SMOTE, K-means SMOTE, and adaptive synthetic (ADASYN) oversampling to address the issue of imbalanced datasets and enhance the performance of machine learning models. Preprocessing significantly enhances the quality of input data by reducing noise, redundant data, and unnecessary data. This enables the machines to identify crucial patterns that facilitate the extraction of significant and pertinent information from the preprocessed data. This study preprocesses the data using various top-level preprocessing steps. Furthermore, two imbalanced Twitter datasets are used to compare the performance of oversampling techniques with six machine learning models including random forest (RF), SVM, K-nearest neighbor (KNN), AdaBoost (ADA), logistic regression (LR), and decision tree (DT). In addition, the bag of words (BoW) and term frequency and inverse document frequency (TF-IDF) features extraction approaches are used to extract features from the tweets. The experiments indicate that SMOTE and ADASYN perform much better than other techniques thus providing higher accuracy. Additionally, overall results show that SVM with 'linear' kernel tends to attain the highest accuracy and recall score of 99.67% and 1.00% on ADASYN oversampled datasets and 99.57% accuracy on SMOTE oversampled dataset with TF-IDF features. The SVM model using 10-fold cross-validation experiments achieved 97.40 mean accuracy with a 0.008 standard deviation. Our approach achieved 2.62% greater accuracy as compared to other current methods.Article Enhancing Detection of Epileptic Seizures Using Transfer Learning and EEG Brain Activity Signals(Elsevier, 2025) Kina, Erol; Raza, Ali; Are, Prudhvi Chowdary; Velasco, Carmen Lili Rodriguez; Ballester, Julien Brito; Diez, Isabel De La Torre; Ashraf, ImranEpileptic seizures are neurological events characterized by sudden and excessive electrical discharges in the brain, leading to disruptions in brain function. Epileptic seizures can lead to life-threatening situations such as status epilepticus, which is characterized by prolonged or recurrent seizures and may lead to respiratory distress, aspiration pneumonia, and cardiac arrhythmias. Therefore, there is a need for an automated approach that can efficiently diagnose epileptic seizures at an early stage. The primary objective of this study is to develop a highly accurate approach for the early diagnosis of epileptic seizures. We use electroencephalography (EEG) signal data based on different brain activities to conduct experiments for epileptic seizure detection. For this purpose, a novel transfer learning technique called random forest-gated recurrent unit (RFGR) is proposed. The EEG brain activity signal data is fed into the RFGR model to generate a new feature set. The newly generated features are based on the class prediction probabilities extracted by the RFGR and are utilized to train models. Extensive experiments are carried out to investigate the performance of the proposed approach. Results demonstrate that the RFGR, when used with the random forest model, outperforms state-of-the-art techniques, achieving a high accuracy of 99.00 %. Additionally, explainable artificial intelligence analysis is utilized to provide transparent and understandable explanations of the decision-making processes of the proposed approach.
