Browsing by Author "Durap, Feyyaz"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Amine-Functionalized Graphene Nanosheet-Supported Pdauni Alloy Nanoparticles: Efficient Nanocatalyst for Formic Acid Dehydrogenation(Royal Soc Chemistry, 2018) Bulut, Ahmet; Yurderi, Mehmet; Kaya, Murat; Aydemir, Murat; Baysal, Akin; Durap, Feyyaz; Zahmakiran, MehmetFormic acid (HCOOH), a major by-product of biomass processing with high energy density, stability and non-toxicity, has a great potential as a safe and a convenient liquid hydrogen (H-2) storage material for combustion engines and fuel cell applications. However, high-purity hydrogen release from the catalytic decomposition of aqueous formic acid solution at desirable rates under mild conditions stands as a major challenge that needs to be solved for the practical use of formic acid in on-demand hydrogen generation systems. Described herein is a new nanocatalyst system comprised of 3-aminopropyltriethoxysilane-functionalized graphene nanosheet-supported PdAuNi alloy nanoparticles (PdAuNi/f-GNS), which can reproducibly be prepared by following double solvent method combined with liquid-phase chemical reduction, all at room temperature. PdAuNi/f-GNS selectively catalyzes the decomposition of aqueous formic acid through the dehydrogenation pathway (similar to 100% H-2 selectivity), in the absence of any promoting additives (alkali formates, Bronsted bases, Lewis bases, etc.). PdAuNi/f-GNS nanocatalyst provides CO-free H-2 generation with a turnover frequency of 1090 mol H-2 mol metal(-1) h(-1) in the additive-free dehydrogenation of formic acid at almost complete conversion (>= 92%) even at room temperature. The catalytic activity provided by PdAuNi/f-GNS nanocatalyst is higher than those obtained with the heterogeneous catalysts reported to date for the additive-free dehydrogenation of formic acid. Moreover, PdAuNi/f-GNS nanoparticles show high durability against sintering, clumping and leaching throughout the catalytic runs, so that the PdAuNi/f-GNS nanocatalyst retains almost its inherent catalytic activity and selectivity at the end of the 10th recycle.Article Dihydrogen Phosphate Stabilized Ruthenium(0) Nanoparticles: Efficient Nanocatalyst for the Hydrolysis of Ammonia-Borane at Room Temperature(Mdpi Ag, 2015) Durap, Feyyaz; Caliskan, Salim; Ozkar, Saim; Karakas, Kadir; Zahmakiran, MehmetIntensive efforts have been devoted to the development of new materials for safe and efficient hydrogen storage. Among them, ammonia-borane appears to be a promising candidate due to its high gravimetric hydrogen storage capacity. Ammonia-borane can release hydrogen on hydrolysis in aqueous solution under mild conditions in the presence of a suitable catalyst. Herein, we report the synthesis of ruthenium(0) nanoparticles stabilized by dihydrogenphosphate anions with an average particle size of 2.9 +/- 0.9 nm acting as a water-dispersible nanocatalyst in the hydrolysis of ammonia-borane. They provide an initial turnover frequency (TOF) value of 80 min(-1) in hydrogen generation from the hydrolysis of ammonia-borane at room temperature. Moreover, the high stability of these ruthenium(0) nanoparticles makes them long-lived and reusable nanocatalysts for the hydrolysis of ammonia-borane. They provide 56,800 total turnovers and retain similar to 80% of their initial activity even at the fifth catalytic run in the hydrolysis of ammonia-borane at room temperature.Article Hydrogen Liberation From the Hydrolytic Dehydrogenation of Dimethylamine-Borane at Room Temperature by Using a Novel Ruthenium Nanocatalyst(Royal Soc Chemistry, 2012) Caliskan, Salim; Zahmakiran, Mehmet; Durap, Feyyaz; Ozkar, SaimHerein we report the discovery of an in situ generated, highly active nanocatalyst for the room temperature dehydrogenation of dimethylamine-borane in water. The new catalyst system consisting of ruthenium(0) nanoparticles stabilized by the hydrogenphosphate anion can readily and reproducibly be formed under in situ conditions from the dimethylamine-borane reduction of a ruthenium(III) precatalyst in tetrabutylammonium dihydrogenphosphate solution at 25 +/- 0.1 degrees C. These new water dispersible ruthenium nanoparticles were characterized by using a combination of advanced analytical techniques. The results show the formation of well-dispersed ruthenium(0) nanoparticles of 2.9 +/- 0.9 nm size stabilized by the hydrogenphosphate anion in aqueous solution. The resulting ruthenium(0) nanoparticles act as a highly active catalyst in the generation of 3.0 equiv. of H-2 from the hydrolytic dehydrogenation of dimethylamine-borane with an initial TOF value of 500 h(-1) at 25 +/- 0.1 degrees C. Moreover, they provide exceptional catalytic lifetime (TTO = 11 600) in the same reaction at room temperature. The work reported here also includes the following results; (i) monitoring the formation kinetics of the in situ generated ruthenium nanoparticles, by using the hydrogen generation from the hydrolytic dehydrogenation of dimethylamine-borane as a catalytic reporter reaction, shows that sigmoidal kinetics of catalyst formation and concomitant dehydrogenation fits well to the two-step, slow nucleation and then autocatalytic surface growth mechanism, A -> B (rate constant k(1)) and A + B -> 2B (rate constant k(2)), in which A is RuCl3 center dot 3H(2)O and B is the growing, catalytically active Ru(0)(n) nanoclusters. (ii) Hg(0) poisoning coupled with activity measurements after solution infiltration demonstrates that the in situ generated ruthenium(0) nanoparticles act as a kinetically competent heterogeneous catalyst in hydrogen generation from the hydrolytic dehydrogenation of dimethylamine-borane. (iii) A compilation of kinetic data depending on the temperature and catalyst concentration is used to determine the dependency of reaction rate on catalyst concentration and the activation energy of the reaction, respectively.Article Palladium Nanoparticles Supported on Hydroxyapatite Nanospheres: Highly Active, Reusable and Green Catalyst for Suzuki - Miyaura Cross Coupling Reactions Under Aerobic Conditions(Wiley-v C H verlag Gmbh, 2018) Bulut, Ahmet; Aydemir, Murat; Durap, Feyyaz; Gulcan, Mehmet; Zahmakiran, MehmetThe development of simply prepared, highly active and reusable nanocatalysts for Suzuki-Miyaura cross coupling reactions under mild and green conditions remains a challenge in the field of synthetic organic chemistry. Herein, we describe a new nanocatalyst comprising of palladium nanoparticles supported on hydroxyapatite nanospheres, which can reproducibly be formed in-situ during the Suzuki-Miyaura coupling reactions starting with Pd(II)-exchanged nanohydroxyapatite. The characterization of the resulting catalyst by using ICP-OES, P-XRD, XPS, TEM, HRTEM, SEM and N-2-adsorption-desorption analyses revealed that the formation of 3.7 +/- 1.3nm palladium(0) nanoparticles (Pd(0)(similar to 430) nanoclusters) on the surface of nano-sized (similar to 50nm) hydroxyapatite (nano-HAp) support by keeping the host framework intact. This previously unappreciated combination of Pd NPs and nano-HAp (PdNPs@nano-HAp) shows excellent activities (TOF's > 3x10(5) h(-1)) in the Suzuki-Miyaura cross coupling reactions of different arylbromides with phenylboronic acid under mild, green and aerobic conditions. More importanly, these new supported palladium(0) nanoparticles were found to be highly durable nanocatalyst throughout the reusability experiments, they maintain almost their inherent activity after 10(th) catalytic cycle at high conversion (> 98%).