Browsing by Author "Elshami, Wiam"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Iron (Iii) Oxide Doped Lithium Borate Glasses: Structural and Charged Particles/Photon Shielding Properties(Elsevier, 2020) Kara, U.; Susoy, G.; Issa, Shams A. M.; Elshami, Wiam; Yorgun, N. Yildiz; Abuzaid, M. M.; Tekin, H. O.The elemental composition and surface morphologies of the (Li2B4O7) (100-x) (Hematite) x glass samples (here x = 10,20, 30 and 40% weight) were acquired by SEM/EDX measurements. Using the EDX results, the mass attenuation coefficient (mu/rho in units of cm(2)/g) of the glasses were generated with MCNPX simulation codes and calculated by XCOM software. Both results were matched by utilizing relative deviations. Next, Half Value Layer (HVL), Effective Atomic Number (Z(eff)), Mean Free Path (MFP), Exposure Buildup Factors (EBF), Energy Absorption Buildup Factors (EABF), Fast Neutron Removal Cross Sections (Sigma(R)) and Relative Dose Distribution (RDD for gamma and neutron) were calculated. Mass Stopping Power (MSP) and Projected Range (PR) values were calculated to examine the proton and alpha shielding properties of the hematite doped glass samples. According to the results obtained, mu/rho, Z(eff), and Sigma(R) values increase as the percentage of hematite mineral in the glass samples increases. In addition, it was observed that HVL, MFP, EBF, EABF and RDD values decreased with increasing hematite percentage. The increase in the rate of hematite in the glass provided alpha and proton particles to have shorter ranges. Among the studied glass samples, lithium borate glass with 40% hematite mineral ratio is the sample with the best gamma, neutron and charged particles shielding features.Article Scanning Electron Microscopy (Sem), Energy-Dispersive X-Ray (Edx) Spectroscopy and Nuclear Radiation Shielding Properties of [α-Fe3+o(oh)] Lithium Borate Glasses(Springer Heidelberg, 2020) Kara, U.; Susoy, G.; Issa, Shams A. M.; Elshami, Wiam; Yorgun, N. Yildiz; Abuzaid, M. M.; Tekin, H. O.Goethite [alpha-Fe3+O(OH)]-doped lithium borate glasses in the chemical form of [(100 - x) Li(2)B(4)O(7)mineralx = 10, 20, 30, 40 wt%] were synthesized and investigated in terms of their ability to protect the human being and environment from ionizing radiation. Elemental analysis of four different goethite [alpha-Fe3+O(OH)]-doped lithium borate glass samples called GOG10, GOG20, GOG30 and GOG40 prepared in different contribution rates was tested using energy-dispersive X-ray technique. In addition, the surface morphology of the manufactured glass samples was determined by scanning electron microscopy. The glass samples subject to the study were evaluated in terms of radiation shielding properties by calculating the shielding parameters such as mass attenuation coefficient (mu(m)), half value layer, mean free path, effective atomic number (Z(eff)), exposure and energy absorption build-up factors, effective removal cross section (sigma(R)) for fast neutron and RDD (for gamma and neutron) with the help of the XCOM and MCNPX simulation code. Mass stopping power and projected ranges values of the studied glass samples were calculated in order to consider the shielding performance against proton and alpha particles. The results showed that increase in goethite additive increases the gamma protection capacity of glasses. As a result, the glass sample with the highest goethite contribution encoded with GOG40 has better shielding efficiency in terms of the gamma and neutron radiation shielding.