Browsing by Author "Erdogan, Mumin Alper"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Erythropoietin Shows Gender Dependent Positive Effects on Social Deficits, Learning/Memory Impairments, Neuronal Loss and Neuroinflammation in the Lipopolysaccharide Induced Rat Model of Autism(Churchill Livingstone, 2020) Solmaz, Volkan; Erdogan, Mumin Alper; Alnak, Alper; Meral, Ayfer; Erbas, OytunWe aimed to evaluate the effects of EPO in the lipopolysaccharide (LPS) induced rat model of autism in terms of social deficits, learning and memory impairments, as well as their neurochemical correlates. Sixteen female Sprague Dawley rats randomly distributed into two equel groups, then were caged with fertile males for mating. At the 10th day of pregnancy, 0.5 ml %0,9 NaCl saline was given to first group, 100 mu g/kg LPS was given to second group to induce autism. On postnatal 21th day, forty-eight littermates were divided into four groups as; 8 male, 8 female controls, 16 male and 16 female LPS-exposed. Then, LPS groups were also divided in to two groups as saline (1 mg/kg/day) and EPO 600 U/kg/day groups, and animals were treated 45 days. At 50th day, after behavioral evaluations, brain levels of TNF-alpha, nerve growth factor (NGF) were measured. Histologically, hippocampal neuronal density and GFAP expression were assessed. Three-chamber sociability and social novelty test, passive avoidance learning test were revealed significant differences among the EPO and control groups. Histologically, hippocampal CAl & CA3 regions displayed significant alterations regarding gliosis (GFAP-positive cells) and regarding frontal cortical thickness in EPO groups compare to controls. Biochemical measurements of the brain levels of TNF-alpha and NGF levels showed significant differences between controls and EPO groups. According to our findings EPO treatment has beneficial effects on ASD-like symptoms, learning and memory processes, neuronal loss and neuroinflammation in the LPS induced rat model of autism, with some gender differences through inflammatory and neurotrophic pathways.Article Protective Effect of Dapagliflozin on Colistin-Induced Renal Toxicity(Mre Press, 2021) Bora, Ejder Saylav; Erdogan, Mumin Alper; Meral, Ayfer; Karakaya, Zeynep; Erbas, OytunObjectives: Multiple-drug resistance to Gram-negative bacteria has increased significantly in recent years. Colistin is increasingly used as a last line of defense against these bacteria. However, colistin has been associated with nephrotoxicity in experimental animals. This study explores the protective effect of dapagliflozin in a rodent model of nephrotoxicity. Material Method: The present study includes a total of 24 male rats, of which 16 were given a single 20 mg/kg dose of colistin (Colimycin 150 mg/mL) intravenously to induce renal toxicity. The remaining eight rats were given no drugs in order to serve as the control, Group A. The 16 rats treated with colistin were then divided into two groups. Rats in Group B received 0.9% NaCl saline solution at a dose of 30 mL/kg/day intraperitoneally (i.p.) and 10 mg/kg/day dapagliflozin (Forziga 10 mg) via oral gavage. Those in Group C received 0.9% NaCl saline solution at an i.p. dose of 30 mL/kg/day. Both saline and dapagliflozin were administered as described over the course of ten days. The animals were euthanized and blood samples were taken by cardiac puncture for further analysis. Their kidneys were removed for histopathological and biochemical examination. Results: Levels of creatinine, BUN, KIM-1, and MDA were significantly increased in the 16-rat (Groups B and C) treatment group, in comparison to the control group; however, these biomarkers were significantly normalized in Group B, which had received dapagliflozin in addition to saline. The GSH levels of Group C showed significant decline when compared to those of the control group, and were significantly normalized in Group B. Histologically, in Group 2, we observed severe tubular dilatation and tubular epithelial cell injury in comparison to the control group. These severe anatomical changes were decreased in Group B. Conclusion: Apart from its positive effect on glucose regulation, which is the usual purpose of dapagliflozin, we observed that in colistin-induced nephrotoxicity, it decreases oxidative stress by inhibiting SGLT-2, and has restorative effects in terms of histopathology and biochemistry. These findings offer hope that the use of dapagliflozin may be protective for contrast nephropathy, which causes renal tubule damage through oxidative mechanisms. Future studies will further clarify the mechanistic action of colistin and dapagliflozin, and may support the hypothesis that dapagliflozin can be used as an adjunctive therapy in all nephrotoxic conditions.