Browsing by Author "Erk, Nevin"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Electrochemical Biosensors as a Novel Platform in the Identification of Listeriosis Infection(Mdpi, 2023) Mehrannia, Leila; Khalilzadeh, Balal; Rahbarghazi, Reza; Milani, Morteza; Kanberoglu, Gulsah Saydan; Yousefi, Hadi; Erk, NevinListeria monocytogenes (L.M.) is a gram-positive bacillus with wide distribution in the environment. This bacterium contaminates water sources and food products and can be transmitted to the human population. The infection caused by L.M. is called listeriosis and is common in pregnant women, immune-deficient patients, and older adults. Based on the released statistics, listeriosis has a high rate of hospitalization and mortality; thus, rapid and timely detection of food contamination and listeriosis cases is necessary. During the last few decades, biosensors have been used for the detection and monitoring of varied bacteria species. These devices are detection platforms with great sensitivity and low detection limits. Among different types of biosensors, electrochemical biosensors have a high capability to circumvent several drawbacks associated with the application of conventional laboratory techniques. In this review article, different electrochemical biosensor types used for the detection of listeriosis were discussed in terms of actuators, bioreceptors, specific working electrodes, and signal amplification. We hope that this review will facilitate researchers to access a complete and comprehensive template for pathogen detection based on the different formats of electrochemical biosensors.Article An Electrochemical Sensing Platform With a Molecularly Imprinted Polymer Based on Chitosan-Stabilized Metal@metal-Organic Frameworks for Topotecan Detection(Springer Wien, 2023) Mehmandoust, Mohammad; Tiris, Gizem; Pourhakkak, Pouran; Erk, Nevin; Soylak, Mustafa; Kanberoglu, Gulsah S.; Zahmakiran, MehmetThe present study aims to develop an electroanalytical method to determine one of the most significant antineoplastic agents, topotecan (TPT), using a novel and selective molecular imprinted polymer (MIP) method for the first time. The MIP was synthesized using the electropolymerization method using TPT as a template molecule and pyrrole (Pyr) as the functional monomer on a metal-organic framework decorated with chitosan-stabilized gold nanoparticles (Au-CH@MOF-5). The materials' morphological and physical characteristics were characterized using various physical techniques. The analytical characteristics of the obtained sensors were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). After all characterizations and optimizing the experimental conditions, MIP-Au-CH@MOF-5 and NIP-Au-CH@MOF-5 were evaluated on the glassy carbon electrode (GCE). MIP-Au-CH@MOF-5/GCE indicated a wide linear response of 0.4-70.0 nM and a low detection limit (LOD) of 0.298 nM. The developed sensor also showed excellent recovery in human plasma and nasal samples with recoveries of 94.41-106.16 % and 95.1-107.0 %, respectively, confirming its potential for future on-site monitoring of TPT in real samples. This methodology offers a different approach to electroanalytical procedures using MIP methods. Moreover, the high sensitivity and selectivity of the developed sensor were illustrated by the ability to recognize TPT over potentially interfering agents. Hence, it can be speculated that the fabricated MIP-Au-CH@MOF-5/GCE may be utilized in a multitude of areas, including public health and food quality.