Browsing by Author "Erogul, Osman"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Analysis of Water-Equivalent Materials Used During Irradiation in the Clinic With Xcom and Beamnrc(Elsevier, 2020) Tugrul, Taylan; Erogul, OsmanThe devices used in the departments of Radiology, Nuclear Medicine, and Radiation Oncology should check for precise dose at some periods. The purpose of study is to compare the materials used for dosimetric control using Monte Carlo (MC) simulation. For MC simulation, BEAMnrc and DOSXYZnrc were used. For photoelectric absorption and total absorption, XCOM was used. Five phantom materials were selected. These materials were PMMA, polystyrene, blood liquid, soft tissue, and water. The PDD's have calculated for each material by DOSXYZnrc. When Percent Depth Dose (PDD's) examined, we could see that the water and polystyrene behaved like soft tissue and blood. However, The PMMA material didn't match with water and other materials. As a result, dose distribution for any materials is independent of its atomic number. Density of material is more important for dose distribution at MV energies. For dosimetric control, density of material should be chosen close the water properties. PMMA material shouldn't use instead of water for dose control.Article Determination of Initial Electron Parameters by Means of Monte Carlo Simulations for the Siemens Artiste Linac 6 Mv Photon Beam(Elsevier Science Bv, 2019) Tugrul, Taylan; Erogul, OsmanAim: In this study, we investigated initial electron parameters of Siemens Artiste Linac with 6 MV photon beam using the Monte Carlo method. Background: It is essential to define all the characteristics of initial electrons hitting the target, i.e. mean energy and full width of half maximum (FWHM) of the spatial distribution intensity, which is needed to run Monte Carlo simulations. The Monte Carlo is the most accurate method for simulation of radiotherapy treatments. Materials and methods: Linac head geometry was modeled using the BEAMnrc code. The phase space files were used as input file to DOSXYZnrc simulation to determine the dose distribution in a water phantom. We obtained percent depth dose curves and the lateral dose profile. All the results were obtained at 100 cm of SSD and for a 10 x 10 cm(2) field. Results: We concluded that there existed a good conformity between Monte Carlo simulation and measurement data when we used electron mean energy of 6.3 MeV and 0.30 cm FWHM value as initial parameters. We observed that FWHM values had very little effect on PDD and we found that the electron mean energy and FWHM values affected the lateral dose profile. However, these effects are between tolerance values. Conclusions: The initial parameters especially depend on components of a linac head. The phase space file which was obtained from Monte Carlo Simulation for a linac can be used as calculation of scattering, MLC leakage, to compare dose distribution on patients and in various studies. (C) 2019 Greater Poland Cancer Centre. Published by Elsevier B.V. All rights reserved.