1. Home
  2. Browse by Author

Browsing by Author "Erol, Kadir"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Amino Acid-Based Hydrophobic Cryogels for Efficient Methylene Blue Removal: a Reusable and Eco-Friendly Approach To Dye-Contaminated Wastewater Treatment
    (Mdpi, 2025) Sofuoglu, Merve; Kuyucu, Ali Ender; Erol, Kadir; Gokmese, Faruk
    The release of synthetic dyes into the environment through industrial wastewater represents a significant environmental concern. In this study, a hydrophobic cryogel, Poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-phenylalanine), was synthesized and employed for the efficient removal of methylene blue from aqueous solutions. The cryogel exhibited a surface area of 6.834 m2/g and a water retention capacity of 218.6%. Adsorption experiments conducted under various conditions revealed a high adsorption capacity of 1304.6 mg/g for MB. Thermodynamic analyses indicated that adsorption occurs spontaneously and follows a monolayer adsorption model. The adsorption capacity increased with temperature and ionic strength, confirming that hydrophobic forces predominantly drive the interaction. Reusability tests showed that the cryogel maintained its adsorption efficiency over five consecutive adsorption-desorption cycles, with a desorption efficiency of up to 98%. These findings demonstrate that Poly(HEMA-MAPA) cryogel is a practical, reusable, and eco-friendly adsorbent for removing methylene blue, a common textile dye pollutant, from water systems.
  • Loading...
    Thumbnail Image
    Article
    Anion Effect on Obtaining Nano-Sized Metal Particules by Reduction Reaction
    (2022) Köse, Dursun Ali; İlhan, Sebati; Erol, Kadir; Bülter, Melda Bolat
    The word “nano” means; one in a billion of a physical mass. Nanotechnology has been frequently beneficial branch of science in recent years by applying nanoparticules to various fields. Synthesis of particules in nano is size, has increased the covered surface area in unit volume and this made expanding of using nanoparticules in many different areas. Especially the metal nanoparticules have many advantages leading to development of many ways of synthesis. One of these methods of synthesis is “chemical reduction”. This work makes a research on the anion effects on the size mass nanoparticules of metals Cu(II), Ni(II), Co(II), Zn(II) and Mn(II) after reduction to nano size of sodium bor hidrur which belongs to salt of asetat and chlor, nitrate, sulfate. Depending on the radius ratios and solubility values of metal cations and anions, the nanoparticle obtained from Cu(CH3COO)2 salt has the smallest radius. Nanometal particles with the largest radius were obtained by reduction of Cl- ion salts. Size analyze and passing electrone microscope (SEM) analysis made about the characterization of synthesised nano particules.
  • Loading...
    Thumbnail Image
    Article
    Effective Removal of Dyes From Aqueous Systems by Waste-Derived Carbon Adsorbent: Physicochemical Characterization and Adsorption Studies
    (Nature Portfolio, 2025) Kuyucu, Ali Ender; Selcuk, Ahmet; Onal, Yunus; Alacabey, Ihsan; Erol, Kadir
    Due to their cost-effectiveness and high surface area, activated carbons are commonly used for the adsorption of dyes from aqueous solutions. In this study, activated carbon was synthesized from walnut shell waste via KOH activation (1:3 ratio), yielding a surface area of 2347.4 m(2)/g. Reactive Blue 19 and Reactive Red 195 adsorption behavior were studied under varying experimental conditions. These included natural pH values (6.8-7.2), dye concentrations between 50 and 1250 mg L--(1), and adsorbent dosages ranging from 0.1 to 1.0 g. Adsorption equilibrium was achieved within 150 min. The maximum adsorption capacities were found to be 1227.17 mg g(-)(1) for RB 19 and 235.74 mg g(-)(1) for RR 195. Isotherm modeling was conducted using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models, with Freundlich providing the best fit for both dyes, indicating multilayer adsorption on heterogeneous surfaces. Thermodynamic analysis revealed that the adsorption processes were spontaneous and endothermic, with negative Gibbs free energy (Delta G degrees), positive enthalpy (Delta H degrees), and positive entropy (Delta S degrees) values. These results highlight the high adsorption performance and practical potential of walnut shell-derived activated carbon for dye removal from wastewater.