Browsing by Author "Karabay, Baris"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article [1,2,5]thiadiazolo[3,4-G]quinoxaline Acceptor-Based Donor-Acceptor Polymers: Effect of Strength and Size of Donors on the Band Gap(Wiley, 2017) Gokce, Gurcan; Karabay, Baris; Cihaner, Atilla; Ozkut, Merve IcliElectrochromic polymers based on [1,2,5]thiadiazolo[3,4-g]quinoxaline acceptor and thiophene, 3,4-ethylenedioxythiophene and 3,3-didecyl-3,4-proylenedioxythiophene donors, namely poly(6,7-diphenyl-4,9-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline) (P1), poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-6,7-diphenyl-[1,2,5]thiadiazolo[3,4-g]quinoxaline) (P2), and poly(4-(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-9-(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-6,7-diphenyl-[1,2,5]thiadiazolo[3,4-g]quinoxaline) (P3), respectively, were electrochemically and/or chemically synthesized and characterized. Electrochemical and optical properties of the polymers were then investigated. The results, which were obtained electrochemically and optically, indicate that the polymers bearing the same acceptor and different donor units have a band gap range of 0.59-1.24 eV depending on the strength and size of the donor units and band gap determination method. A significant finding in this study was the phenomenon that when the acceptor is physically huge, the general rule that a weak donor would have a high band gap whereas a strong donor would have low band gap can be broken due to the torsional angles/steric hindrances involved with physically large donor molecules. (c) 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3483-3493Conference Object Acid/ Base Doped/ Dedoped Low Band Gap Polymer(Amer Chemical Soc, 2016) Karabay, Baris; Gokce, Gurcan; Cihaner, Atilla; Icli Ozkut, MerveArticle From Narrow To Narrower: a Very Low Band Gap [1,2,5]thiadiazolo[3,4-G]quinoxaline Donor-Acceptor Type Electrochromic Polymer(Electrochemical Soc inc, 2017) Gokce, Gurcan; Karabay, Baris; Cihaner, Atilla; Ozkut, Merve IcliThe development of low bandgap polymers (or zero bandgap polymers) is still one of the main goals of scientists and many viable paths have been formulated in order to accomplish this. In this study, a donor-acceptor-donor type electrochromic polymer based on [1,2,5]thiadiazolo[3,4-g]quinoxaline acceptor and selenophene donor units with extremely low bandgap (ranging from 0.21 to 0.60 eV depending on bandgap determination method) is synthesized and characterized electrochemically, optically and colorimetrically. Electrochemical and optical studies showed that the polymer film was susceptible to both n- and p-type doping and has a mustard color in its neutral state, and upon oxidation its color changed to brown, and upon reduction the color is light purple. (C) 2017 The Electrochemical Society. All rights reserved.Article Furan and Benzochalcogenodiazole Based Multichromic Polymers Via a Donor-Acceptor Approach(Royal Soc Chemistry, 2013) Icli-Ozkut, Merve; Ipek, Halil; Karabay, Baris; Cihaner, Atilla; Onal, Ahmet M.Two new furan and benzochalcogenodiazole based monomers, namely 4,7-di(furan-2-yl) benzo[c][1,2,5]-selenadiazole (FSeF) and 4,7-di(furan-2-yl) benzo[c][1,2,5]thiadiazole (FSF), were designed and synthesized via a donor-acceptor-donor approach. The monomers were electrochemically polymerized via potentiodynamic or potentiostatic methods. The monomers and their polymers exhibited lower oxidation potentials (1.16 V and 1.06 V for monomers; 0.93 V and 0.80 V for polymers vs. Ag/AgCl) and red shifts of the whole dual-band absorption spectra upon moving from S to Se. Intramolecular charge transfer properties of the monomers and the polymers were demonstrated by using electroanalytical and optical methods. Also, the polymers PFSeF and PFSF were multicolored at different redox states and have low band gaps of 1.43 eV and 1.61 eV, respectively.