Browsing by Author "Karakas, Bulent"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Article An Action of a Regular Curve on R3 and Matlab Applications(Rgn Publ, 2013) Karakas, Bulent; Baydas, SenayWe define an action set of a regular curve not passing origin using a normed projection. If alpha(t) is a regular curve not passing origin, then the curve beta( t) = alpha( t)/parallel to alpha(t)parallel to is on unit sphere. beta(t) is called normed projection of alpha(t) [ 3]. Every point b(t) subset of beta(t) defines an orthogonal matrix using Cayley's Formula. So we define an action set R-alpha(t) subset of SO(3) of alpha(t). We study in this article some important relations alpha(t) and R-alpha(P), orbit of point P is an element of R-3. At the end we give some applications in Matlab.Article Anadolu Kültüründe Kilit ( Doğu ve Güneydoğu Anadolu Örnekleri )(2008) Karakas, Bulent; Saraçoğlu, Semra-Article Anket Yöntemiyle Liderlik Yönelimlerini Tespit Modellemesi(2008) Evirgen, Suat; Karakas, Bulent“Anket Yöntemiyle Liderlik Yönelimlerini Tespit Modellemesi (AYLİYÖNTEM)”; liderlik özellikleri araştırılan kişinin, çözümü liderlik özellikleri içeren sorunlar karşısında, hangi liderlik özelliklerini kullanarak çözüme ulaştığı, bu özelliklerin frekans analizindeki değerlendirmesi ve kişinin liderlik kategorisinin belirlenmesinde olay tasarımı tekniğini kullanan bir model tanıtımıdır. Anket, sorularının ve cevaplarının oluşturulması itibariyle farklılık gösterir. Soruların tümü veya herhangi birinde oluşturulan bir sorunla karşılaşmamış birinin böyle bir problemi nasıl çözeceğini ve hangi liderlik özelliklerini kullanacağını kestirmek zordur. Bu nedenle sanal olarak kişiyi olabildiğince sanal bir problemin içine alarak ve liderlik özelliklerinin bazılarını içeren çözümlerden hangisini tercih ettiğini belirleyerek kişinin liderlik özellikleri hakkında bilgi edinilebilir.Article The Cissoid of Diocles in the Lorentz-Minkowski Plane(Tubitak Scientific & Technological Research Council Turkey, 2019) Baydas, Senay; Karakas, BulentThis article presents the cissoid of Diodes and the cissoid of two circles with respect to origin in the Lorentz-Minkowski plane.Article Defining a Curve as a Bezier Curve(Taylor & Francis Ltd, 2019) Baydas, Senay; Karakas, BulentA Bezier curve is significant with its control points. When control points are given, the Bezier curve can be written using De Casteljau's algorithm. An important property of Bezier curve is that every coordinate function is a polynomial. Suppose that a curve is a curve which coordinate functions are polynomial. Can we find points that make the curve as Bezier curve? This article presents a method for finding points which present as a Bezier curve.Article Kinematics of Supination and Pronation With Stewart Platform(2021) Baydas, Senay; Karakas, BulentThis paper presents kinematics form of pronation and supination movement. The algorithm of Stewart platform motion can be used to create a new motion of supination (or pronation) motion. Pronation motion can be taken as Stewart motion which has not any rotation on x-axis and y-axis. In this case, pronation motion has only one parameter. Supination movement creates a helix curve. Additionally, the correlation between rotation angle and extension is 1. This allows us to use artificial intelligence in pronation motion. In this article, the algorithm and Matlab applications of pronation motion are given in the concepts of artificial intelligence approach. This is a new and important approach.Article Lie Grup Etkisi Altında Yörüngelerin Özellikleri(2022) Karakas, Bulent; Tuğrul, FatihBu çalışmada, Lie grubunun manifold yapısının geometrik formu ile Lie dönüşüm grubu olarak diferensiyellenebilir bir manifoldun noktalarına etki ettirildiğinde, Lie grubunun geometrik yapısı ile Lie dönüşüm grubu etkisi altındaki noktaların yörüngelerinin geometrik yapıları arasındaki ilişkiler incelendi. Matlab uygulamaları yapıldı.Article Modelling of the 3r Motion at Non-Parallel Planes(Rgn Publ, 2012) Baydas, Senay; Karakas, BulentWe construct two similar planar mechanisms which have different and non-parallel planes. We build up a new connection between these mentioned mechanisms in this paper. How the motion of a mechanism is carried to another plane without making a difference in mechanism algorithm and some necessary mathematical relationships are found out. Therefore, a mechanism structure can be transported from one of the intersecting planes to another planes without changing its mechanism algorithm. This mechanism structure is as finger motion and the most important result is this.Article Relation Between Press Intensity and Angular Velocity at a Rppp Mechanism(Hindawi Ltd, 2011) Baydas, Senay; Karakas, BulentWe study some properties of RPPP. RPPP is discussed by rising with constant velocity along a given axis. The constant pressure which it stresses on a constant axis is defined by the increasing PPP. Some relations between the increase at PPP and angular velocity at R are analyzed and relations of correlation are investigated at Matlab.