Browsing by Author "Keles, Ahmet Yasin"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Assessment of Redox Homeostasis Via Genotoxicity, Cytotoxicity, Apoptosis and Nrf-2 in Colorectal Cancer Cell Lines After Treatment With Ganoderma Lucidum Extract(Taylor & Francis Ltd, 2024) Tuluce, Yasin; Keles, Ahmet Yasin; Kostekci, SedatThis study aimed to investigate the cytotoxic and apoptotic effects of Ganoderma lucidum, Pleurotus ostreatus, Pleurotus eryngii, and Inonotus hispidus fungal extracts on HT-29 and HCT-116 colorectal cancer cell lines and to search the DNA damage and oxidative stress caused by these extracts. Accordingly, mushroom extracts were applied to colorectal cancer cell lines in vitro, and the IC50 result was obtained with the MTT test. According to the IC50 result, Ganoderma lucidum extract had the most effective cytotoxicity value among all used mushroom extracts. TAS, TOS, and NRF-2 tests were used to investigate the molecular effect of Ganoderma lucidum extract on oxidative stress; the DNA ladder test was performed to assess DNA damage, the Scratch assay method was applied for cell migration analysis, and the colony assay was used to determine the colony formation potential of the cells. The results showed that Ganoderma lucidum mushroom extract reduces cell proliferation, colony formation, and NRF-2, induces DNA damage, slows cell migration, and increases oxidative stress. This study shows that Ganoderma lucidum mushroom extract reduces cell proliferation through damaging cellular DNA and has a cytotoxic effect in colorectal cancer cell lines.Article Investigation of Potential Anti-Metastatic Effect of Metformin and Caffeic Acid Combination Therapy in Breast Cancer Cell Line in In-Vitro Culture Model(Humana Press inc, 2025) Yavuz, Halil; Tuluce, Yasin; Karakus, Fuat; Kostekci, Sedat; Tuncyurekli, Merve; Keles, Ahmet YasinThe invasion and metastasis of cancer cells transform localized cancers into systemic and life-threatening diseases, posing one of the most significant challenges in cancer treatment. This study tested the hypothesis that combined treatment with Caffeic acid (CA) and metformin (MTF) could inhibit or reduce effective signaling pathways involved in the proliferation, survival, and metastasis of MCF-7 breast cancer cells. Anti-proliferation analysis determined the IC50 values for MTF (4.5 mM) and CA (163 mu M) after 72 h. Cell migration analysis showed that MTF and CA significantly inhibited MCF-7 cell migration by the 72nd hour, both alone and in combination, without affecting HME1 healthy cell migration from the 48th hour. Colony formation analysis revealed that CA completely inhibited colony formation in MCF-7 cells, while MTF reduced it by 19%. ELISA results indicated that neither CA nor MTF affected the levels of VEGF-A, E-cadherin, or TINAGL-1 proteins, which are involved in MCF-7 cell migration and invasion. However, MTF significantly reduced IL-1 beta protein levels, and CA significantly reduced IL-4 protein levels in MCF-7 cells. RT-qPCR results largely supported the ELISA findings. Overall, CA and MTF exhibited potential to inhibit MCF-7 cell apoptosis, migration, tumor microenvironment modulation, and metastasis.Article Investigation the Immunotherapeutic Potential of Mir-4477a Targeting Pd-1/Pd-l1 in Breast Cancer Cell Line Using a Cd8+ Co-Culture Model(Springer, 2025) Tuluce, Yasin; Kostekci, Sedat; Karakus, Fuat; Keles, Ahmet Yasin; Tuncyurekli, MerveBackgroundIn the present study, we investigated the immunotherapeutic and anticancer activities of microRNA-4477a (miR-4477a) as a PD-L1 inhibitor in breast cancer cells (MCF-7).MethodsTo this end, a series of analytical procedures were conducted, including bioinformatic analysis, RT-PCR analysis, PD-L1 ELISA, in vitro co-culture analysis, cytotoxicity assays, cell migration assays, and colony formation assays, with the objective of determining the anticancer activity of the compound in question.ResultsThe results demonstrated that miR-4477a can bind to three distinct regions of PD-L1 mRNA with high scores (94%, 88% and 80%), effectively targeting and suppressing the crucial regulatory pathways of cancer cells. In vitro studies demonstrated that a 25 nM dose of miR-4477a caused relatively high cytotoxicity in the MCF-7 cell line, suppressed PD-L1 gene expression, and decreased sPD-L1 protein levels, strongly inhibited cell migration, and significantly reduced colony formation. The in vitro co-culture analysis revealed that cancer cells were unable to evade the surveillance and cytotoxic activity of T cells (CD8+) due to the blockade of PD-L1 expression by miR-4477a.ConclusionsIn conclusion, miRNA-4477a has the capacity to regulate immune responses in breast cancer cells and may therefore be a promising candidate for use in cancer immunotherapy as a therapeutic agent.