Browsing by Author "Kizilkan, Nurhan Didem"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Impact of Beneficial Microorganisms Inoculated Cotton Plants on Spodoptera Exigua (Lepidoptera: Noctuidae)(Entomological Soc Brasil, 2024) Kizilkan, Nurhan Didem; Konus, Metin; Risvanli, Mehmet Ramazan; Yilmaz, Can; Kara, Hilmi; Ozgokce, Mehmet Salih; Atlihan, RemziThis study discusses plant-mediated effects of beneficial soil-borne microorganisms on population growth parameters of Spodoptera exigua (Lepidoptera: Noctuidae), a major cotton pest. In particular, we investigated the impact of these microorganisms on oxidative stress, chlorophyll content, and sugar and protein levels in cotton plants, and how these changes in the plant affect the survival, development, reproduction, and ultimately population growth of the pest. A longer preadult period, lower preadult survival rate, and lower reproduction were obtained for the pest cohort feeding on treated plants, which resulted in lower population parameters, i.e., intrinsic growth rate, finite growth rate, and net reproduction rate. The population projection results showed the same trend as the population parameters. These results can be attributed to the changes caused by microorganisms in the treated plants. There was no oxidative stress in the treated plants. Instead, the chlorophyll content in these plants increased, and the protein-carbohydrate ratio decreased. Additionally, we assessed the effects of plant-insect-microorganisms interaction on total glutathione levels, glutathione S-transferase, and esterase enzyme activities in S. exigua. Overall results indicate that beneficial microorganisms tested enhance the plant's ability to defend against the pest. Additionally, the findings from this study provide valuable insights into the complex interplay among plants, microorganisms, and pests, offering potential strategies for incorporating these interactions into pest management practices.Article Synthesis and Biological Activity of New Indole Based Derivatives as Potent Anticancer, Antioxidant and Antimicrobial Agents(Elsevier, 2022) Konus, Metin; Cetin, Dogan; Kizilkan, Nurhan Didem; Yilmaz, Can; Fidan, Ceylan; Algso, Muheb; Arslan, SevkiIndoles have very critical roles to design new biologically active molecules in medicinal chemistry. They display higher biological activities or create new biological properties when compared to the other heteroaromatic compounds. In the present study, 1-ethyl-2-phenyl-3-(thiophen-2-yl)-1H-indole (3), 8-ethyl-8H-benzo[a]thieno[3,2-c]carbazole (4), 1-ethyl-2-phenyl-3-(5-(phenylethynyl)thiophen-2-yl)-1H-indole (6) and 1-ethyl-3-(furan-2-yl)-2-phenyl-1H-indole (7) are prepared via Pd-catalyzed cross-coupling reactions and iodocyclization reactions. It was determined that compound 3 and 7 were also seemed to be better drug candidates at the end of in silico evaluation. Furthermore, compound 7 provided the best antibacterial and antifungal activity against the test indicator strains. It showed a potent antifungal effect on Aspergillus niger ATCC 16404 (MIC: 1.17 mu g mL(-1); MFC: 2.7 mu g mL(-1)). In addition, while compounds 3, 6 and 7 showed significantly high molybdenum reducing activity compared to trolox, 7 exhibited almost the same antioxidant activity (EC50 = 7.1 mu M) compared to the trolox standard (EC50 = 5.07 mu M). After characterization, the cytotoxic activities of novel indoles were tested against different cancer cell lines and non-cancerous human cell line. Compound 3 and 7 had selective cytotoxic activity towards cancer cells. EC50 values of compound 3 were found to be 248.15 mu M for LnCap, 139.81 mu M for HepG2, and 164.72 mu M for the Caco-2 cell line. Similarly, The EC50 value of 7 was found as 38.725 mu M for LnCap, 70.02 mu M for HepG2, and 86.98 mu M for Caco-2, and 90.97 mu M for Hek293 cell line. Moreover, it was revealed that these two compounds showed strong apoptotic properties towards these cancer cell lines as described by image cytometry and real time PCR. Consequently, these results improved that our molecules 3 and 7 could be new candidates as anticancer agents and apoptosis inducers. (C) 2022 Elsevier B.V. All rights reserved.