Browsing by Author "Kokturk, Mine"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article Ecotoxicological Effects of Bimetallic Pdni/Mwcnt and Pdcu/Mwcnt Nanoparticles Onto Dna Damage and Oxidative Stress in Earthworms(Springernature, 2022) Kokturk, Mine; Altindag, Fikret; Nas, Mehmet Salih; Calimli, Mehmet HarbiBimetallic nanoparticles are synthesized using two different metal elements and used recently in many fields. However, limited studies related to the ecotoxic effects of nanoparticles available in the literature. The purpose of this study is to synthesize and characterize bimetallic PdCu/MWCNT and PdNi/MWCNT NPs and investigate their ecotoxic effects on earthworms. For this purpose, we injected approximately 20 mu L of various concentrations of bimetallic PdCu/MWCNT and PdNi/MWCNT NPs (1, 10, 100, 1000, and 2000 mg/L) into the coelomic space of earthworms. We evaluated survival rate, malformations, reactive oxygen species (ROS) level, 8-OHdG content, and histopathological changes in earthworms at the 48th hour after exposure. PdCu/MWCNT and PdNi/MWCNT NPs were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) pattern, and Raman-scattering spectroscopy. Toxicological examinations showed that PdCu/MWCNT NPs reduced the survival rate of earthworms (2000 mg/L, 84%) and caused various malformations (various lesions, thinning, swelling, and rupture), but nonsignificant effects of survival rate and malformations were observed in earthworms using PdNi/MWCNT NPs. The histopathological examinations of earthworm tissues exposed with PdNi/MWCNT determined that tissues in all treatment groups had a normal histological appearance. However, at a concentration of 2000 mg/L of PdCu/MWCNT NPs, atrophy in the longitudinal muscle layer and less degenerative cells in the epidermis layer were observed in earthworm tissues. It was determined that PdNi/MWCNT and PdCu/MWCNT NPs caused significant increases in ROS levels and 8-OHdG activity in earthworm tissues after 48 h. Finally, our results demonstrated that the toxicity of PdNi/MWCNT NPs was detected to be lower than PdCu/MWCNT NPs. However, both nanoparticles may pose a toxicological risk at high concentrations (1000 and 2000 mg/L). These findings will provide valuable information to studies on the use of PdNi/MWCNT NPs in wastewater treatment systems, industrial and medical fields, which have been determined to have less ecotoxicological risk.Article Has Pdcu@go Effect on Oxidant/Antioxidant Balance? Using Zebrafish Embryos and Larvae as a Model(Elsevier Ireland Ltd, 2023) Ucar, Arzu; Yeltekin, Asli Cilingir; Kokturk, Mine; Calimli, Mehmet Harbi; Nas, Mehmet Salih; Parlak, Veysel; Atamanalp, MuhammedIndustrial products containing PdCu@GO can gain access to the aquaculture environment, causing dangerous effects on living biota. In this study, the developmental toxicity of zebrafish treated with different concentrations (50, 100, 250, 500 and 1000 mu g/L) of PdCu@GO was investigated. The findings showed that PdCu@GO administration decreased the hatchability and survival rate, caused dose-dependent cardiac malformation. Reactive oxygen species (ROS) and apoptosis were also inhibited in a dose-dependent manner, with acetylcho-linesterase (AChE) activity affected by nano-Pd exposure. As evidence for oxidative stress, malondialdehyde (MDA) level increased and superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx) activities and glutathione (GSH) level decreased due to the increase in PdCu@GO concentration. Our research, it was determined that the oxidative stress stimulated by the increase in the concentration of PdCu@GO in zebrafish caused apoptosis (Caspase-3) and DNA damage (8-OHdG). Stimulation of ROS, inflammatory cytokines, tumor Necrosis Factor Alfa (TNF-alpha) and interleukin - 6 (IL-6), which act as signaling molecules to trigger proin-flammatory cytokine production, induced zebrafish immunotoxicity. However, it was determined that the in-crease of ROS induced teratogenicity through the induction of nuclear factor erythroid 2 level (Nrf-2), NF-icB and apoptotic signaling pathways triggered by oxidative stress. Taken together with the research findings, the study contributed to a comprehensive assessment of the toxicological profile of PdCu@GO by investigating the effects on zebrafish embryonic development and potential molecular mechanisms.Article Lc-esi-ms/Ms Analysis of Secondary Metabolites of Different St. John's Wort (Hypericum Perforatum) Extracts Used as Food Supplements and Evaluation of Developmental Toxicity on Zebrafish (Danio Rerio) Embryos and Larvae(Elsevier, 2023) Atalara, Mehmet Nuri; Kokturk, Mine; Altindag, Fikret; Ozhan, Gunes; Ozen, Tevfik; Demirtas, Ibrahim; Gulcini, LlhamiHypericum perforatum (St. John's wort) belongs to the Hypericaceae family and is one of the best known Hypericum species worldwide. It is a very popular and valuable medicinal plant widely distributed in Anato-lia. Hypericum perforatum contains many bioactive components that play a role in activities has been used as a food supplement. The extracts are used within safe dose range that are harmless and effective for health. When the SJW1, SJW2 and SJW3 fractions of St. John's Wort extracts were exposed to zebrafish embryos and larvae at different concentrations (5, 10, 100, and 300 mg/mL), the survival rates at 96th hour were deter-mined as 83.3, 27.5 and 2.5%, respectively. No significant changes were found in the malformation rates, and the larval emergence was found to be above 80% at 96th hour for all extracts. No caspase-3 expression was found at the 96th hour in the larvae. Similar secondary components of extracts were observed except quanti-tative differences. The use of samples in doses of 10 mg/mL and below as food supplement may be harmless, however, threshold dose values of H. perforatum extracts lower toxic doses may be due to the different amounts of secondary metabolites.& COPY; 2023 Published by Elsevier B.V. on behalf of SAAB.Article May Pdcu@f-Mwcnt Nps Be an Ecotoxicologic Risk(Wiley, 2023) Alak, Gonca; Yeltekin, Asli Cilingir; Kokturk, Mine; Nas, Mehmet Salih; Parlak, Veysel; Calimli, Mehmet Harbi; Atamanalp, MuhammedThe mechanisms of various metal nanoparticles (NPs) are still a matter of debate in aquatic toxicology. In order to close this gap, the number of studies on this subject is increasing. The aims of this study are to explore the interactions of PdCu@f-MWCNT NPs with zebrafish and get to know if it has an ecotoxicological risk. In this study, we synthesized, characterized PdCu@f-MWCNT NPs, and investigated its ecotoxicological effects. The chemical and morphological structures of PdCu@f-MWCNT nanomaterials were elucidated with advanced analysis techniques such as scanning electron microscope (SEM), X-ray spectrophotometer (EDX), transmission electron microscope (TEM), and X-ray diffraction (XRD) analyses. The ecotoxicological risks were investigated by conducting biochemical analyses and malformation defects in zebrafish. The results were obtained using multiple marker applications including oxidative stress parameters, proinflammatory cytokine expressions, DNA damage, and apoptosis markers. The obtained findings showed embryonic development, survival rate, and incidence of malformation increasing in parallel with the dose increase in zebrafish exposed to PdCu@f-MWCNT NPs at 10-1000 mu g/L levels. Despite the observed decreases in antioxidant enzyme activities, GSH level, AChE activity, and NRF-2 level, inductions in malondialdehyde (MDA) level, IL-6, TNF-alpha, NF-kB, DNA damage, and apoptosis levels were observed with increasing dose. Considering these findings, it has been determined that there are toxic effects in zebrafish at all levels above the concentration that we examine as a safe dose (10 mu g/L). The effects of all studied concentrations of this NP above the safe dosage, especially on oxidative stress, malformation, and immune system, were found to be quite significant. The more widespread use of nanotechnology in the future will mean more contact of aquatic organisms with NPs. As a result, it is clearly seen that these organisms, which form the important link of the food chain, and the aquatic environment are living at risk conditions.Article Textile Dyes Maxilon Blue 5g and Reactive Blue 203 Induce Acute Toxicity and Dna Damage During Embryonic Development of Danio Rerio(Elsevier Science inc, 2021) Kokturk, Mine; Altindag, Fikret; Ozhan, Gunes; Calimli, Mehmet Harbi; Nas, Mehmet SalihCommon textile dyes used in various industrial sectors are organic compounds and considered for the aquatic environment as pollutants. The textile dye industry is one of the main sectors that have serious impacts on the environment due to a large amount of wastewater released into the ecosystem. Maxilon blue 5G (MB-5G) and Reactive Blue 203 (RB-203) are widely used textile dyes. However, their potential toxicity on living organisms remains to be elucidated. Here, we investigate the acute toxicity and genotoxicity of MB-5G and RB-203 dyes using the zebrafish embryos/larvae. Embryos treated with each dye for 96 h revealed LC50 values of acute toxicity as 166.04 mg L-1 and 278.32 mg L-1 for MB-5G and RB 203, respectively. When exposed to MB-5G and RB-203 at different concentrations (1, 10, and 100 mg L-1) for 96 h, the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, significantly increased in brain tissues as compared to control. MB-5G and RB-203 resulted in common developmental abnormalities including tail malformation, microphthalmia, pericardial edema, curved body axis, and yolk sac/pericardial edemas. Moreover, at its highest dose (100 mg L-1), RB-203 caused premature hatching after 48 h, while MG-5G did not. Our results collectively reveal that the textile dyes MB-5G and RB-203 cause genotoxicity and teratogenicity during embryonic and larval development of zebrafish. Thus, it is necessary to eliminate these compounds from wastewater or reduce their concentrations to safe levels before discharging the textile industry wastewater into the environment.Article What Is the Eco-Toxicological Level and Effects of Graphene Oxide-Boramidic Acid (go-Ed Np) ?: in Vivo Study on Zebrafish Embryo/Larvae(Elsevier Sci Ltd, 2022) Kokturk, Mine; Yildirim, Serkan; Yigit, Aybek; Ozhan, Gunes; Bolat, Ismail; Alma, Mehmet Hakki; Atamanalp, MuhammedGraphene oxide (GO) and their natural/synthetic composites are encouraging tools for humanity. There is a need to address critical challenges and potential risk possibilities in GO-based architectures, which have a wide range of uses. In this study, ecotoxicological levels as well as GO-based nanoparticle synthesis, characterization, interaction mechanism and toxicity detection levels for potential biomedical applications were determined on zebrafish (Danio rerio). The effects of GO-ED-BA NP (graphene oxide-boramidic acid nano particles) which was characterized by FT-IR, SEM, TEM, and BET on survival rate, morphological abnormalities (yolk sac edema, lordosis/kyphosis, pericardial edema, and tail malformation), hatching rate as well as neuronal degeneration /necrosis, 8 OHdG and TNF-alpha expression were observed in D. rerio embryos and larvae. In the obtained findings, it was determined that the toxicity profile of GO-ED-BA NP appeared similar, in high-dose application with single GO use, causing a cytotoxic, pro-inflammatory response and triggering oxidative stress. However, increased malformation rates and mortality at the highest concentration were due to nanoparticle sizes and GO. The presence of boramidic acid unit on graphene nanostructure changed the GO's toxicity profile and positively directed the proinflammatory and oxidative stress response. Synthesizing of graphene oxide-boramidic acid and its toxicity panels compared to graphene oxide are reported for the first time in this study.