Browsing by Author "Kucuk, O."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article The Effect of Different Materials and Techniques on Stress Distribution in Cad/Cam Endocrowns(Springer, 2020) Eskitascioglu, M.; Kucuk, O.; Eskitascioglu, G.; Eraslan, O.; Belli, S.Computer-aided design/manufacturing (CAD/CAM) endocrowns are commonly applied to strengthen endodontically treated teeth with too much tissue loss. Monolithic or multilayer structures may be used for this purpose. Restorations made with multilayering technique may mimic natural teeth better. The purpose of this finite elemental analysis (FEA) research was to appraise the impact of different materials and application methods on the stress effect in CAD/CAM applied endocrowns. A 3-dimensional mathematical model simulating an endodontically treated mandibular first molar was modeled. The sample was then modified to imitate the ceramic endocrown applied molar tooth. Three FEA models were then created from this main model to simulate the following endocrown structures: 1: lithium disilicate reinforced glass ceramic, 2: monolithic zirconia, 3: multi-layered glass ceramic and glass-fiber endocrown (the core structure was composed of glass-fiber while the crown is prepared by glass ceramic). The SolidWorks/CosmosWorks programs were used as structural analysis programs. The materials used in the study were accepted as homogeneous and isotropic. A 300 N load was applied to the occlusal surfaces of the restored teeth. The results of the study are presented according to the von Mises criteria. The von Mises stresses recorded at the cavity base were 0.417-0.7, 0.6-0.85, and 0.083-0.25 MPa, respectively. The multilayering technique reduced stresses as compared to the other two different designs and materials and showed similar stress distributions with the natural tooth model. Models simulating teeth with a zirconia endocrown showed the highest stresses. The multilayering technique using fiber-reinforced glass ceramic as a core and glass ceramic as a crown reduced the stresses and showed stress distributions similar to natural teeth. This technique can be used to create biomimetic restorations with a core material, which mimics dentin (glass-fiber reinforced ceramic) and crown material, which mimics enamel (glass ceramic).Erratum Retraction: Stress Distribution in Cad/Cam Endocrowns Produced Via Different Materials and Techniques: a Numerical Simulation (Retraction of Vol 52, Pg 812, 2020)(Springer, 2023) Eskitascioglu, M.; Kucuk, O.; Eskitascioglu, G.; Eraslan, O.; Belli, S.Article Stress Distribution in Cad/Cam Endocrowns Produced Via Different Materials and Techniques: a Numerical Simulation(Springer, 2022) Eskitascioglu, M.; Kucuk, O.; Eskitascioglu, G.; Eraslan, O.; Belli, S.Computer-aided design/manufacturing (CAD/CAM) endocrowns are commonly applied for the strengthening of endodontically treated teeth with excessive tissue loss. Monolithic or multilayer structures may be used for this purpose. Restorations made with multilayering techniques may better mimic natural teeth. This study assessed the impact of different materials and application methods on the stress state of CAD/CAM endocrowns. To this end, a 3D FEM model simulating an endodontically treated mandibular first molar was elaborated. The sample was then modified to imitate the ceramic endocrown-applied molar tooth. Three FEM models were then developed from this main model to simulate the following endocrown structures: (1) lithium disilicate reinforced glass ceramic, (2) monolithic zirconia, and (3) multilayered glass ceramic and glass-fiber endocrown (i.e., a glass-fiber core structure and glass ceramic crown). The SolidWorks/Cosmosworks software packages were used for structural analysis. The materials used in the study were treated as homogeneous and isotropic. A 300 N load was applied to the occlusal surfaces of the restored teeth. The von Mises stresses were calculated at the cavity base, ranging from 0.417-0.700 MPa, 0.600-0.850 MPa, and 0.083-0.250 MPa, respectively. The multilayering technique provided the lowest stresses and stress distributions comparable with the natural tooth model. Models of teeth restored with zirconia endocrowns showed the highest stresses and were the least applicable in dental pracice.