Browsing by Author "Kul, Sinan"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Adsorptive Removal of Cationic (By2) Dye From Aqueous Solutions Onto Turkish Clay: Isotherm, Kinetic, and Thermodynamic Analysis(Taylor & Francis inc, 2016) Sozudogru, Onur; Fil, Baybars Ali; Boncukcuoglu, Recep; Aladag, Erdinc; Kul, SinanThe removal of Basic Yellow 2 (BY2), a cationic dye, from aqueous solution by using montmorillonite as adsorbent was studied in batch experiments. The effect of pH, agitation speed, adsorbent dosage, initial dye concentration ionic strength, and temperature on the removal of BY2 was also investigated. Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms were applied to fit the adsorption data of BY2 dye. Equilibrium data were well described by the typical Langmuir adsorption isotherm. The maximum monolayer adsorption capacity was calculated as 434.196 mg g(-1) from the Langmuir isotherm model. The adsorption data was fitted to both the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle kinetic models, and the calculated values of the amount adsorbed at equilibrium (q(e)) by pseudo-second-order equations were found to be in good agreement with the experimental values. The thermodynamic factors were also evaluated. The entropy change (Delta S*) was negative, suggesting that the adsorption process decreases in entropy and enthalpy change (Delta H*) was positive which indicates endothermic nature. The positive Delta G* value confirms the un-spontaneity of the process. In addition, a semiempirical model was calculated from kinetic data.Article Comparison of Cationic Dyes (Basic Orange 2, Basic Yellow 2 and Basic Violet 3) Removal From Aqueous Solution Using Clay as an Adsorbent(Parlar Scientific Publications (p S P), 2019) Farizoglu, Burhanettin; Fil, Baybars Ali; Sozudogru, Onur; Aladag, Erdinc; Kul, SinanThe present work aims to investigate the removal of three cationic dyes (Basic Orange 2, Basic Yellow 2 and Basic Violet 3) from aqueous solutions by montmorillonite under various experimental conditions. Cationic dyes were selected Basic Orange 2 (BO2), Basic Yellow 2 (BY2) and Basic Violet 3 (BV3). The effects of pH, initial dye concentration, adsorbent dose, agitation speed and ionic strength, on the removal of dyes were studied. According to the experiments results, it was shown, that maximum removal was achieved in less than 45 min. The results indicate that the montmorillonite can be used as a low cost alternative according to other adsorbents in the removal of dyes from wastewater. The maximum adsorption efficiency levels attained were as follows: 95.849% BO2, 99.562% BY2 and 99.169% BV3 onto montmorillonite at pH: 5.0, 100 mg/L initial dye concentration, 0.75g/L clay dosage, 300 rpm agitation speed, 0 M NaCl ionic strength and 293 K, reaction time of 45 min.Article Investigation of the Treatment of Olive Mill Wastewater by Electrooxidation(Springer int Publ Ag, 2022) Kul, Sinan; Boncukcuoglu, Recep; Torun, Fatma Ekmekyapar; Recber, Zuleyha; Sozudogru, Onur; Aladag, ErdincThe electrooxidation process, one of the advanced oxidation processes, is one of the effective treatment processes used in treating various industrial wastewaters. This study investigated the treatment of olive mill wastewater using the electrooxidation process. This study includes the effects of different experimental parameters on chemical oxygen demand and total phenol removal efficiencies in olive mill wastewater. Ti/IrO2/RuO2 mesh plates as anode material and Ti mesh plates as cathode material were used in the study. The effects of stirring rate, dilution factor, pH, type of support electrolyte, the concentration of support electrolyte, and current density on chemical oxygen demand and total phenol removal efficiencies were examined in the experiments using a batch reactor. The study found that the chemical oxygen demand and total phenol removal rates were 96.93% and 100% under optimum conditions, respectively. According to the treatment data obtained, it can be said that olive mill wastewater can be treated by the electrooxidation method and can be proposed as a pretreatment system before entering biological treatment.