Browsing by Author "Kuscu, Ilkay"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Correction Application of (u-th)/He Hematite Geochronology To the Caldag Lateritic Ni-Co Deposit, Western Anatolia: Implications for Multi-Stage Weathering Events During Interglacial Periods/Segments (Vol 172, 106203, 2024)(Elsevier, 2024) Gulyuz, Nilay; Kuscu, Ilkay; Danisik, MartinArticle Geological and Mineralization Characteristics of the Kestanelik Epithermal Au-Ag Deposit in the Tethyan Metallogenic Belt, Nw Turkey(Geological Society Korea, 2020) Gulyuz, Nilay; Gulyuz, Erhan; Shipton, Zoe K.; Kuscu, Ilkay; Lord, Richard A.Kestanelik epithermal gold deposit is situated in the Biga Peninsula, which hosts numerous metallic deposits belonging to the Tethyan Metallogenic Belt. In the Biga peninsula the Tethyan Metallogenic Belt is represented by a Neo-Tethyan suture zone. Discovered deposits along the belt are commonly associated with Cenozoic magmatism ranging between 52 and 18 Ma in age, formed due syn- to post-collisional tectonics. In this study, we focus on the deposit-scale geological and mineralization characteristics of Kestanelik in order to determine the formation and evolution of the deposit within the tectono-magmatic history of the Biga Peninsula. We (1) mapped the geology of the deposit area (2) conducted paleostress analyses, (3) observed and examined the macroscopic and petrographical textural, mineralogical and alteration characteristics of the mineralization and (4) interpreted geophysical resistivity survey and geochemical assay data. The stratigraphic age of the Kestanelik deposit, bracketed by cross cutting relations and supported by the geophysical data, is middle Lutetian-early Priabonian which also implies that the deposit has a genetic link with the Cenozoic post-collisional calc-alkaline magmatism. A NE-SW oriented compressional regime determined from the paleostress analyses is consistent with the kinematics of the vein system and is attributed to the collision and further convergence after the closure of the northern branch of the Neo-Tethys Ocean. The fracture system provided structural pathways for the transport of the hydrothermal fluids. The common presence of pseudo-bladed quartz and hydrothermal breccias, and the low total sulphide and base metal contents in the mineralized veins indicate that the Kestanelik is a low sulphidation epithermal-type gold deposit. Boiling, mixing (hypogene oxidation) and supergene enrichment are the likely gold deposition and enrichment processes respectively.Article Low Temperature Thermochronology Reveals Tilting of Crystalline Bodies, Halilaga Porphyry Cu-Au Deposit, Nw Anatolia: Implications for Exploration of Porphyry Copper Deposits and Interpretation of Low-Temperature Thermochronology Data for Regional Tectonics(Elsevier, 2024) Gulyuz, Nilay; Gulyuz, Erhan; Karaoglan, Fatih; Kuscu, IlkayBecause most crystalline bodies lack intrinsic paleo-horizontal information, their tilting cannot be measured directly. Their vertical movement, however, may be tracked by low-T thermochronology (LTT) tools. Because tilting is caused by differential vertical movements, it can be understood if the rate of differential movements is determined. In this regard, here we apply a new LTT-based approach to calculate the orientation of a tilted crystalline body, the Halilaga Cu-Au deposit, in NW Anatolia. Orientation is consistent with the one calculated from a drillhole-based 3D model of the deposit. This reveals the significance of tilting calculations for the exploration of porphyry Cu deposits. On the other hand, and more importantly, it emphasizes the importance of tilting calculations for geological applications such as LTT-based exhumation histories of samples taken from vertical profiles, and paleomagnetic studies. AHe data from the Halilaga deposit reveals the earliest response to the Aegean back-arc extension at similar to 24 Ma in the north of Western Anatolia. Lastly, thermal models, the new complementary datasets for the tectonic evolution of the region, show that the Halilaga deposit was exhumed to the surface by the coupling effects of Aegean extension and westward propagation of the North Anatolian Fault, which occurred not earlier than 2 Ma.Article Multiphase Deformation, Flluid Fllow and Mineralization in Epithermal Systems: Inferences From Structures, Vein Textures and Breccias of the Kestanelik Epithermal Au-Ag Deposit, Nw Turkey(Tubitak Scientific & Technological Research Council Turkey, 2023) Gulyuz, Nilay; Shipton, Zoe Kai; Kuscu, IlkayWe investigate the multiphase deformation, fluid flow, and mineralization processes in epithermal systems by presenting a detailed study of vein textures and breccias of the Kestanelik epithermal Au-Ag deposit, NW Turkey. The mineralization in the deposit is associated with several quartz veins. Fault-hosted veins and mode I veins share many textural and breccia characteristics owing to (i) overprinting of tectonic breccias formed during coseismic rupturing by subsequent coseismic hydrothermal brecciation and (ii) reworking of earlier vein breccia phases by repeated rupturing and hydraulic fracturing events. The spatial distribution of breccias at fault-hosted veins proposes that power of coseismic hydrothermal brecciation is controlled by the distance to the level of boiling within a vein. The brecciation affects the entire vein proximal to the level of boiling; however, it is limited to the footwall contact of the vein more distally at the upper levels of a vein. Varying number of mineralization events for the veins suggests that any individual earthquake event reopened only one or more sealed vein, but not all at once. Fewer mineralization events in fault-hosted veins compared to the mode I veins is either linked to (i) focusing of high fluid flux into the conduits of mode I veins that accommodate more dilation or (ii) reopening of mode I veins owing to the driven of extensional failure under low differential stress. Although fault-hosted veins record fewer mineralization events, they have higher average Au grade (4.106 g/t) compared to that of mode I veins (2.736 g/t). On the other hand, fewer mineralization events in wall rock structures compared to the adjacent faults is attributed to (i) absence or poor development of the damage zone structures in earlier seismic events or (ii) deactivation of them after clogging due to the rotation of the optimum stress field or (iii) their formation as hydraulic extension fractures. This study emphasizes the importance of detailed studies of vein infill for understanding the internal structural evolution of the veins in epithermal deposits that is interest to the geologists within both industry and academic fields.Article Repeated Reactivation of Clogged Permeable Pathways in Epithermal Gold Deposits: Kestanelik Epithermal Vein System, Nw Turkey(Geological Soc Publ House, 2018) Gulyuz, Nilay; Shipton, Zoe K.; Kuscu, Ilkay; Lord, Richard A.; Kaymakci, Nuretdin; Gulyuz, Erhan; Gladwell, David R.This study presents a detailed study of the dimensions, geometry, textures and breccias of a well-exposed epithermal vein system, the Kestanelik gold deposit in the Biga Peninsula, NW Turkey, and investigates the permeability enhancement mechanisms in epithermal gold deposits. Here mineralization is associated with quartz veins up to 13.6 m thick. Vein textures and breccia components indicate repeated sealing and subsequent brecciation of wall rock and pre-existing vein infill. Field and petrographic analyses characterize east-west-trending veins as left lateral faults, whereas NE-SW-trending veins are extensional (Mode I) fractures. Cataclasite and tectonic breccia of wall rocks and early quartz, hydrothermal crackle breccias, and matrix-supported chaotic breccias of pre-existing vein infill, all of which are cemented by late iron-oxide-bearing quartz, indicate that co-seismic rupturing and hydraulic fracturing are two major permeability enhancement mechanisms. In addition, transient variations in local stress direction, caused by syn-mineralization dyke intrusion, may have enhanced permeability on misoriented surfaces and at locations where the dip changes. This study emphasizes the importance of understanding structural geology and kinematics as controls on the location of boiling and mineralization mechanisms in epithermal gold deposits.