Browsing by Author "Muhammed, Muhammed Tilahun"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Exploring the Role of Quercetin on Doxorubicin and Lapatinib-Mediated Cellular and Mitochondrial Responses Using in Vitro and in Silico Studies(Taylor & Francis Ltd, 2025) Erguc, Ali; Albayrak, Gokay; Muhammed, Muhammed Tilahun; Karakus, Fuat; Arzuk, Ege; Ince-Erguc, ElifDoxorubicin (DOX) and lapatinib (LAP) have been reported to cause liver toxicity. The roles of mitochondrial and cellular responses in DOX and LAP mediated-hepatotoxicity have not been investigated with or without quercetin (QUE) in HepG2 cells sensitive to mitochondrial damage (high-glucose or galactose media) in addition to in silico studies. Our results revealed that cytosolic pathways might play role a in DOX-induced cytotoxicity rather than mitochondria. QUE exacerbated DOX-induced ATP depletion in both environments. Our data also indicated that cytosolic and mitochondrial pathways might play a role in LAP-induced cytotoxicity. Incubating QUE with LAP increased ATP levels in high-glucose media. Therefore, QUE might have protective effect against LAP-induced cytotoxicity resulting from cytosolic pathways. The findings from in vitro experiments that QUE increased DOX or LAP-induced mitochondrial dysfunction were confirmed by the results from in silico studies indicating that QUE incubated with LAP or DOX might increase mitochondrial dysfunction.Article Mitochondrial Toxicity of Selected Natural Compounds: in Vitro Assessment and in Silico Molecular Docking and Dynamics Simulation(Taylor & Francis Ltd, 2025) Erguc, Ali; Albayrak, Gokay; Muhammed, Muhammed Tilahun; Karakus, Fuat; Arzuk, EgePrangos uechtritzii Boiss & Hausskn stands out for its rich bioactive constituents including prantschimgin (PRA), imperatorin (IMP), suberosin (SUB), adicardin (ADI), and oxypeucedanin hydrate (OPH) in the Apiaceae family. Although these molecules contribute to several biological activities, their mitochondrial toxicity were not illuminated in depth with the appropriate in vitro and in silico models. Cell viability studies investigated the cytotoxic activities of molecules in HepG2 cells by replacing glucose with galactose due to Warburg effects. Mitochondrial toxicity (mitotoxicity) parameters such as cellular adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) levels were assessed with cytotoxic concentrations of selected molecules. Molecular docking and dynamics studies were also conducted against mitochondrial electron transport chain (ETC) complexes (I-V) with selected compounds. In vitro results showed that PRA, SUB, and IMP reduced cell viability more in galactose media compared to high glucose media in a dose-dependent manner. PRA, IMP, and SUB decreased ATP levels and MMP, especially in the galactose medium. The in silico study revealed that PRA, IMP, and SUB might bind to complexes I-V at different levels. The docking study demonstrated that PRA had the highest binding potential with the complexes, higher than the standard ligands in some cases. The molecular dynamics (MD) simulation study showed that PRA formed stable complexes with complexes II, III, and IV. In addition, PRA was anticipated to remain inside the binding site of complex II most stably during the 230 ns simulation period. Our study suggests that PRA, IMP, and SUB exhibit mitotoxicity.