Browsing by Author "Naziroglu, Mustafa"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article The Involvement of Trpm2 on the Mpp+-Induced Oxidative Neurotoxicity and Apoptosis in Hippocampal Neurons From Neonatal Mice: Protective Role of Resveratrol(Taylor & Francis Ltd, 2022) Yildizhan, Kenan; Cinar, Ramazan; Naziroglu, MustafaParkinson's disease (PD) is an age-related chronic neurodegenerative disease. Although PD is known to be a result of damage to hippocampal neurons, its molecular mechanism has yet to be completely clarified. The neurodegeneration in hippocampal neurons has been suggested to include excessive production of reactive oxygen species (ROS). Mitochondrial dysfunction and disruption of intracellular Ca2+ homeostasis play the most important role in the increase in ROS production for the cells. Remarkably, it is stated in the literature that especially the change of Ca2+ homeostasis triggers neuronal degeneration. TRPM2 is a unique calcium-permeable nonselective cation channel, and densest in the numberless neuronal population. The current study aims to elucidate the effect of antioxidant resveratrol (Resv) on TRPM2-mediated oxidative stress (OS) induced by 1-methyl-4-phenylpyridinium (MPP) exposure in the primary mouse hippocampal neurons. The neurons were divided into four groups as Control, Resv , MPP, and MPP+ Resv. In the current results, the activation of TRPM2 was observed in primary hippocampal neurons with MPP incubation. TRPM2 channel expression levels in the MPP group increased in hippocampal neurons after MPP exposure. In addition, intracellular free Ca2+ concentration and TRPM2 channel currents were highest in MPP groups, although they were decreased by the Resv treatment. In addition, mitochondrial membrane depolarization, ROS, caspase-3, caspase-9, and apoptosis values induced by MPP decreased with resveratrol treatment. In conclusion, in our study, we observed that the dysregulation of OS-induced TRPM2 channel activation in hippocampal neurons exposed to MPP caused apoptotic cell death in neurons, while the use of resveratrol had a protective effect by reducing OS resources in the environment.Article Nmda Receptor Activation Stimulates Hypoxia-Induced Trpm2 Channel Activation, Mitochondrial Oxidative Stress, and Apoptosis in Neuronal Cell Line: Modular Role of Memantine(Elsevier, 2023) Yildizhan, Kenan; Naziroglu, MustafaTRPM2 channel is activated by the increase of hypoxia (HYP)-mediated excessive mitochondrial (mROS) and cytosolic (cROS) free reactive oxygen species generation and intracellular free Ca2+ ([Ca2+]i) influx. The stimulations of the N-methyl-D-aspartate (NMDA) receptor and TRPM2 channel induce mROS and apoptosis in the neurons, although their inhibitions via the treatments of memantine (MEM) and MK-801 decrease mROS and apoptosis. However, the molecular mechanisms underlying MEM treatment and NMDA inhibition' neuroprotection via TRPM2 inhibition in the HYP remain elusive. We investigated the modulator role of MEM and NMDA via the modulation of TRPM2 on oxidative neurodegeneration and apoptosis in SH-SY5Y neuronal cells. Six groups were induced in the SH-SY5Y and HEK293 cells as follows: Control, MEM, NMDA blocker (MK-801), HYP (CoCl2), HYP + MEM, and HYP + MK-801. The HYP caused to the increases of TRPM2 and PARP-1 expressions, and TRPM2 agonist (H2O2 and ADP-ribose)-induced TRPM2 current density and [Ca2+]i concentration via the upregulation of mitochondrial membrane potential, cROS, and mROS generations. The alterations were not observed in the absence of TRPM2 in the HEK293 cells. The increase of cROS, mROS, lipid peroxidation, cell death (propidium iodide/Hoechst) rate, apoptosis, caspase -3, caspase -8, and caspase -9 were restored via upregulation of glutathione and glutathione peroxidase by the treatments of TRPM2 antagonists (ACA or 2-APB), MEM, and MK-801. In conclusion, the inhibition of NMDA receptor via MEM treatment modulated HYPmediated mROS, apoptosis, and TRPM2-induced excessive [Ca2+]i and may provide an avenue for protecting HYP-mediated neurodegenerative diseases associated with the increase of mROS, [Ca2+]i, and apoptosis.Article Protective Role of Selenium on Mpp+ and Homocysteine-Induced Trpm2 Channel Activation in Sh-Sy5y Cells(Taylor & Francis Ltd, 2022) Yildizhan, Kenan; Naziroglu, MustafaHomocysteine is an intermediate product of biochemical reactions occurring in living organisms. It is known that drugs that increase dopamine synthesis used in Parkinson's disease (PD) cause an increase in the plasma homocysteine level. As the plasma homocysteine level increases, the amount of intracellular free calcium ion ([Ca2+](i)) and oxidative stress increase. As a result, it contributes to the excitotoxic effect by causing neurodegeneration. TRPM2 cation channel is activated by high [Ca2+](i) and oxidative stress. The role of TRPM2 in the development of neuronal damage due to the increase in homocysteine in PD has not yet been elucidated. In current study, we aimed to investigate the role of the TRPM2 and selenium (Se) in SH-SY5Y neuronal cells treated with homocysteine (HCT) and MPP . SH-SY5Y cells were divided into four groups: control, MPP, MPP + HCT, and MPP + HCT + Se. The results of plate reader assay, confocal microscope imaging, and western blot analyses indicated upregulation of apoptosis, [Ca2+](i), mitochondrial membrane depolarization, caspase activation, and intracellular ROS values in the cells. The MPP + HCT group had considerably higher values than the other groups. The MPP + HCT + Se group had significantly lower values than all the other groups except the control group. In addition, incubation of MPP + HCT and MPP + HCT + Se groups with TRPM2 antagonist 2-APB increased cell viability and reduced intracellular calcium influx and apoptosis levels. It is concluded that the activation of TRPM2 was propagated in HCT and MPP-induced SH-SY5Y cells by the increase of oxidative stress. The antioxidant property of Se regulated the TRPM2 channel activation and neurodegeneration by providing intracellular oxidant/antioxidant balance.