Browsing by Author "Oltulu, Fatih"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Article Autophagy and Mtor Pathways in Mouse Embryonic Stem Cell, Lung Cancer and Somatic Fibroblast Cell Lines(Wiley, 2019) Oltulu, Fatih; Kocaturk, Duygu C.; Adali, Yasemin; Ozdil, Berrin; Acikgoz, Eda; Gurel, Cevik; Aktug, HuseyinEmbryonic developmental stages and regulations have always been one of the most intriguing aspects of science. Since the cancer stem cell discovery, striking for cancer development and recurrence, embryonic stem cells and control mechanisms, as well as cancer cells and cancer stem cell control mechanisms become important research materials. It is necessary to reveal the similarities and differences between somatic and cancer cells which are formed of embryonic stem cells divisions and determinations. For this purpose, mouse embryonic stem cells (mESCs), mouse skin fibroblast cells (MSFs) and mouse lung squamous cancer cells (SqLCCs) were grown in vitro and the differences between these three cell lines signalling regulations of mechanistic target of rapamycin (mTOR) and autophagic pathways were demonstrated by immunofluorescence and real-time polymerase chain reaction. Expressional differences were clearly shown between embryonic, cancer and somatic cells that mESCs displayed higher expressional level of Atg10, Hdac1 and Cln3 which are related with autophagic regulation and Hsp4, Prkca, Rhoa and ribosomal S6 genes related with mTOR activity. LC3 and mTOR protein levels were lower in mESCs than MSFs. Thus, the mechanisms of embryonic stem cell regulation results in the formation of somatic tissues whereas that these cells may be the causative agents of cancer in any deterioration.Article Comparison of Cell Cycle Components, Apoptosis and Cytoskeleton-Related Molecules and Therapeutic Effects of Flavopiridol and Geldanamycin on the Mouse Fibroblast, Lung Cancer and Embryonic Stem Cells(Sage Publications Ltd, 2016) Aktug, Huseyin; Acikgoz, Eda; Uysal, Aysegul; Oltulu, Fatih; Oktem, Gulperi; Yigitturk, Gurkan; Cetintas, Vildan BozokSimilarities and differences in the cell cycle components, apoptosis and cytoskeleton-related molecules among mouse skin fibroblast cells (MSFs), mouse squamous cell lung carcinomas (SqCLCs) and mouse embryonic stem cells (mESCs) are important determinants of the behaviour and differentiation capacity of these cells. To reveal apoptotic pathways and to examine the distribution and the role of cell cycle-cell skeleton comparatively would necessitate tumour biology and stem cell biology to be assessed together in terms of oncogenesis and embryogenesis. The primary objectives of this study are to investigate the effects of flavopiridol, a cell cycle inhibitor, and geldanamycin, a heat shock protein inhibitor on mouse somatic, tumour and embryonic stem cells, by specifically focusing on alterations in cytoskeletal proteins, cell polarity and motility as well as cell cycle regulators. To meet these objectives, expression of several genes, cell cycle analysis and immunofluorescence staining of intracellular cytoskeletal molecules were performed in untreated and flavopiridol- or geldanamycin-treated cell lines. Cytotoxicity assays showed that SqCLCs are more sensitive to flavopiridol than MSFs and mESCs. Keratin-9 and keratin-2 expressions increased dramatically whereas cell cycle regulatory genes decreased significantly in the flavopiridol-treated MSFs. Flavopiridol-treated SqCLCs displayed a slight increase in several cell cytoskeleton regulatory genes as well as cell cycle regulatory genes. However, gene expression profiles of mESCs were not affected after flavopiridol treatment except the Cdc2a. Cytotoxic concentrations of geldanamycin were close to each other for all cell lines. Cdkn1a was the most increased gene in the geldanamycin-treated MSFs. However, expression levels of cell cytoskeleton-associated genes were increased dramatically in the geldanamycin-treated SqCLCs. Our results revealing differences in molecular mechanisms between embryogenesis and carcinogenesis may prove crucial in developing novel therapeutics that specifically target cancer cells.Article Differences and Similarities in Biophysical and Biological Characteristics Between U87 Mg Glioblastoma and Astrocyte Cells(Springer, 2024) Ozdil, Berrin; Calik-Kocaturk, Duygu; Altunayar-Unsalan, Cisem; Acikgoz, Eda; Oltulu, Fatih; Gorgulu, Volkan; Aktug, HuseyinCurrent cancer studies focus on molecular-targeting diagnostics and interactions with surroundings; however, there are still gaps in characterization based on topological differences and elemental composition. Glioblastoma (GBM cells; GBMCs) is an astrocytic aggressive brain tumor. At the molecular level, GBMCs and astrocytes may differ, and cell elemental/topological analysis is critical for identifying potential new cancer targets. Here, we used U87 MG cells for GBMCS. U87 MG cell lines, which are frequently used in glioblastoma research, are an important tool for studying the various features and underlying mechanisms of this aggressive brain tumor. For the first time, atomic force microscopy (AFM), scanning electron microscopy (SEM) accompanied by energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) are used to report the topology and chemistry of cancer (U87 MG) and healthy (SVG p12) cells. In addition, F-actin staining and cytoskeleton-based gene expression analyses were performed. The degree of gene expression for genes related to the cytoskeleton was similar; however, the intensity of F-actin, anisotropy values, and invasion-related genes were different. Morphologically, GBMCs were longer and narrower while astrocytes were shorter and more disseminated based on AFM. Furthermore, the roughness values of these cells differed slightly between the two call types. In contrast to the rougher astrocyte surfaces in the lamellipodial area, SEM-EDS analysis showed that elongated GBMCs displayed filopodial protrusions. Our investigation provides considerable further insight into rapid cancer cell characterization in terms of a combinatorial spectroscopic and microscopic approach.Article Embryonic Microenvironment Suppresses Yy1 and Yy1-Related Genes in Prostate Cancer Stem Cells(Elsevier Gmbh, 2024) Taskiran, Aysegul; Oktem, Gulperi; Demir, Aleyna; Oltulu, Fatih; Ozcinar, Emine; Duzagac, Fahriye; Acikgoz, EdaYin yang 1 (YY1), a transcription factor, plays crucial roles in cell fate specification, differentiation, and pluripotency during embryonic development. It is also involved in tumorigenesis, drug resistance, metastasis, and relapse caused by cancer stem cells (CSCs), particularly in prostate cancer (PCa). Targeting YY1 could potentially eliminate prostate CSCs (PCSCs) and provide novel therapeutic approaches. PCa tissues often exhibit elevated YY1 expression levels, especially in high-grade cases. Notably, high-grade PCa tissues from 58 PCa patients and CD133high/CD44high high /CD44 high PCSCs isolated from DU145 PCa cell line by FACS both showed significantly increased YY1 expression as observed through immunofluorescence staining, respectively. To investigate the embryonic microenvironment impact on YY1 expression in CSC populations, firstly PCSCs were microinjected into the inner cell mass of blastocysts and then PCSCs were co-cultured with blastocysts. Next Generation Sequencing was used to analyze alterations in YY1 and related gene expressions. Interestingly, exposure to the embryonic microenvironment significantly reduced the expressions of YY1, YY2, and other relevant genes in PCSCs. These findings emphasize the tumor-suppressing effects of the embryonic environment by downregulating YY1 and YY1-related genes in PCSCs, thus providing promising strategies for PCa therapy. Through elucidating the mechanisms involved in embryonic reprogramming and its effects on YY1 expression, this research offers opportunities for further investigation into focused therapies directed against PCSCs, therefore enhancing the outcomes of PCa therapy. As a result, PCa tumors may benefit from YY1 and associated genes as a novel therapeutic target.Article Optimized Method for Using Embryonic Microenvironment To Reprogram Cancer Stem Cells(Dokuz Eylul Univ inst Health Sciences, 2023) Soner, Burak Cem; Oltulu, Fatih; Ozcinar, Emine; Taskiran, Aysegul; Demir, Aleyna; Acikgoz, Eda; Oktem, GulperiPurpose: The embryonic microenvironment contains many properties that have not yet been fully explored. Our aim in this study is to report an optimized and efficient method that enables investigating the effects of the secretome of pluripotent embryonic stem cells on cancer stem cells.Material and Methods: The study is performed with a chimeric model consisted of mouse blastocysts, non cancer stem cells and human prostate cancer stem cells. Ovulation induced mice were used for blastocyst collection. DU145 prostate cancer cell line was separated into non cancer and cancer stem cells using cancer stem cell biomarker expressions by fluorescent activated cell sorting. Human prostate cancer stem cells and non cancer stem cells were microinjected into 4-day blastocyst culture in vitro by intracytoplasmic sperm injection.Results: Chimeric models provide us great convenience in basic oncological studies. In this study, using a chimeric model, we were able to study the secretome of mouse embryonic stem cells and their effect on cancer stem cells. The method is efficient and yield promising result; and could be used to study the effects on other cells as well.Conclusion: The embryonic stem cell microenvironment is suggested to have a great regenerative capacity, nowadays, the center of attraction for cancer research studies. Ethical issues restrict the human embryo studies, however, mimicking the in vivo human microenvironment with 3D cell cultures or bioprinting are now possible. Finally, optimization of new methods including 3D cell cultures with human cell lines will be a great opportunity for better understanding the reprogramming notion.