1. Home
  2. Browse by Author

Browsing by Author "Omer, Rebaz Anwar"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Analytical Techniques for Methyldopa and Metabolites: A Comprehensive Review
    (Taylor & Francis Ltd, 2025) Barzani, Hemn A. H.; Sulaiman, Seerwan Hamadameen; Omer, Rebaz Anwar; Mer, Ali Hussein; Ali, Hoshyar Saadi
    Methyldopa, a centrally acting alpha 2-adrenergic agonist, remains a key antihypertensive drug, particularly prescribed for pregnant and renal-impaired patients. Its clinical significance has led to extensive research aimed at developing reliable analytical methods for its accurate, sensitive, and selective determination in pharmaceutical formulations and biological matrices. Relevant literature was retrieved from Scopus, Web of Science, ScienceDirect, PubMed, and Google Scholar, restricted to English-language publications. This review critically examines the diverse analytical approaches used for Methyldopa quantification, outlining their principles, advantages, limitations, and applicability in both advanced and resource-limited settings. Chromatographic methods, especially high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS/MS), remain the most robust techniques, offering excellent sensitivity (LOD: 10-50 ng/mL for HPLC; as low as 0.7-15 ng/mL for LC-MS/MS) with rapid analysis times. While LC-MS/MS provides superior detection, it is limited by high costs and technical expertise requirements. Electrochemical methods, particularly voltammetry, stand out for their affordability, rapid analysis, and feasibility in decentralized laboratories, achieving LOD values as low as 0.01-0.05 mu M. Spectrophotometric approaches, primarily UV-Vis, remain the simplest and most cost-effective options, making them useful for routine quality control, though with reduced selectivity and higher detection limits. Key analytical challenges include Methyldopa's low concentration in biological fluids, chemical instability, and matrix interferences. This review provides a comparative evaluation of chromatographic, spectrophotometric, and electrochemical techniques, emphasizing the need for portable, low-cost platforms to expand accessibility in therapeutic monitoring. Overall, it offers critical insights for advancing Methyldopa analysis and improving clinical management in diverse healthcare settings.
  • Loading...
    Thumbnail Image
    Article
    Comprehensive Evaluation of Analytical Techniques for the Quantification of Etoposide in Various Matrices
    (Taylor & Francis Inc, 2025) Barzani, Hemn A. H.; Sulaiman, Seerwan Hamadameen; Omer, Rebaz Anwar; Ahmad, Sarbast Naser; Ali, Hoshyar Saadi
    Etoposide (ETO) is a semi-synthetic derivative of podophyllotoxin that is a common topoisomerase II inhibitor in the care of testicular cancer, small-cell lung cancer, leukemias, and lymphomas. Though the utility of ETO is extensive, it is constrained by variable bioavailability, a narrow therapeutic index, and potential for severe toxicities, which necessitate accurate quantification of ETO in pharmaceutical, clinical, and environmental applications. For more than four decades, measures of ETO have been described and developed. Spectrophotometric methods offer simplicity and low cost but lack specificity for complex matrices. High-performance liquid chromatography (HPLC) remains the reference standard, particularly when coupled with UV, fluorescence, or mass spectrometry (LC-MS or MS/MS), and also serves as the established method for pharmacokinetics and therapeutic drug monitoring. Other techniques, including capillary electrophoresis and emerging analytical methods, offer complementary advantages for resolution-challenged applications, thereby enhancing quality in ultra-trace and portable approaches. This review provides a narrative account of all aspects of these measures, specifically considering the basic operating principles, advantages, and disadvantages of each, the complexity of stability, matrix challenges, and ultra-trace measures. The future perspective is the need for greener, cost-effective, and clinically adapted clinical technologies, which will ultimately improve etoposide monitoring practices and patient outcomes.