Browsing by Author "Onde, Sertac"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Molecular Phylogeny of Triticum and Aegilops Genera Based on Its and Matk Sequence Data(Pakistan Botanical Soc, 2016) Dizkirici, Ayten; Kansu, Cigdem; Onde, SertacUnderstanding the phylogenetic relationship between Triticum and Aegilops species, which form a vast gene pool of wheat, is very important for breeding new cultivated wheat varieties. In the present study, phylogenetic relationships between Triticum (12 samples from 4 species) and Aegilops (24 samples from 8 species) were investigated using sequences of the nuclear ITS rDNA gene and partial sequences of the matK gene of chloroplast genome. The phylogenetic relationships among species were reconstructed using Maximum Likelihood method. The constructed tree based on the sequences of the nuclear component (ITS) displayed a close relationship between polyploid wheats and Aegilops speltoides species which provided new evidence for the source of the enigmatic B genome donor as Ae. speltoides. Concurrent clustering of Ae. cylindrica and Ae. tauschii and their close positioning to polyploid wheats pointed the source of the D genome as one of these species. As reported before, diploid Triticum species (i.e. T. urartu) were identified as the A genome donors and the positioning of these diploid wheats on the constructed tree are meaningful. The constructed tree based on the chloroplastic matK sequences displayed same relationship between polyploid wheats and Ae. speltoides species providing evidence for the later species being the chloroplast donors for polyploid wheats. Therefore, our results supported the idea of coinheritance of nuclear and chloroplast genomes where Ae. speltoides was the maternal donor. For both trees the remaining Aegilops species produced a distinct cluster whereas with the exception of T. urartu, diploid Triticum species displayed a monophyletic structure.Article Phylogenetic Relationships Among Triticum L. and Aegilops L. Species as Genome Progenitors of Bread Wheat Based on Sequence Diversity in Trnt-F Region of Chloroplast Dna(Springer, 2013) Dizkirici, Ayten; Kansu, Cigdem; Onde, Sertac; Birsin, Melahat; Ozgen, Murat; Kaya, ZekiCultivated wheat, (Triticum aestivum L.), is one of the most important food crops in the world. The Aegilops L. genus is frequently utilized by plant breeders for improving the current wheat cultivars due to their close relationships. Therefore, understanding the phylogenetic relationships among the species of these genera is not only valuable for plant taxonomy, but also for plant breeding efforts. The presented phylogenetic analysis was based on the sequences of trnT-F chloroplast DNA containing three non-coding sub-regions. Twelve genotypes belonging to four species of Triticum L. genus and twenty-four genotypes belonging to eight species of Aegilops genus were used in the current study. The results postulated a close genetic relationship between diploid Aegilops species containing the BB genome and polyploid Triticum species. With the exception of Aegilops cylindrica Host (CCDD), all other Aegilops species having the CC genome were alienated from Aegilops speltoides Tausch (BB) and clustered together. These two clusters joined by a third cluster including the AA genome containing diploid Triticum species.