Browsing by Author "Pace, Loretta"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Ascorbic Acid Enhances Growth and Dualex Parameters in Arachis Hypogaea L. Under Salt Stress(Springernature, 2024) Tunctuerk, Ruveyde; Oral, Erol; Tunctuerk, Murat; Nohutcu, Luetfi; Najafi, Solmaz; Danesh, Younes Rezaee; Pace, LorettaSalt stress limits crop productivity in arid and semi-arid regions, posing a significant challenge to agricultural sustainability. This study investigates the potential of ascorbic acid (AA) to alleviate the harmful effects of sodium chloride (NaCl) in Arachis hypogaea L. by applying AA concentrations of 0, 100, 200, and 300 ppm and NaCl levels of 100 and 200 mM under controlled conditions. Results showed that the application of 300 ppm AA under 200 mM NaCl notably mitigated salt-induced reductions, enhancing stem and root lengths by 33% and 14% and increasing stem fresh and dry weights by 67% and 39%, respectively. Comparative analysis showed a 3% decrease in plant temperature, a 56% increase in leaf area, and a 59% reduction in malondialdehyde, underscoring AA's protective effects. Although not all measured parameters responded significantly to AA under salt stress, these findings highlight the compound's potential to counteract growth reductions in A. hypogaea, demonstrating its value for sustainable agricultural practices under saline conditions.Article Using Chromosomal Abnormalities and Germination Traits for the Assessment of Tritipyrum Amphiploid Lines Under Seed-Aging and Germination Priming Treatments(Mdpi, 2023) Taghvaei, Mansour; Maleki, Hamideh; Najafi, Solmaz; Hassani, Hossein Shahsavand; Danesh, Younes Rezaee; Farda, Beatrice; Pace, LorettaPrimary Trans Chromosomal Tritipyrum (PTCT) amphiploid is a new cereal grown in saline soil and brackish water for grain and forage production. We evaluated the tolerance to seed deterioration in 13 promising PTCT lines, assessing accelerated aging (AA) tests by using AA boxes with 100% relative humidity at 40 & DEG;C for 72 h. The (Ma/b)(Cr/b)F4 and (St/b)(Cr/b)F4) PTCT lines, more sensitive to seed aging, were primed with NaCl, Salicylic Acid (SA), and Polyethylene Glycol (PEG) to increase the seed vigor of artificially aged seeds. Germination and emergence traits, biochemical parameters, and chromosomal abnormalities induced by artificial aging were measured in deteriorated and not-deteriorated seeds. The highest reduction percentages related to seed vigor were observed in (Ka/b)(Cr/b)F2 (34.52) and La(4B,4D)/b (28.15) lines, while the lowest was found in (Ma/b)(Cr/b)F4 (7.65) and (St/b)(Cr/b)F4 (7.46) lines. Seed aging also increases electrolytes, potassium, and protein leakages. Chromosomal abnormalities are caused by seed aging that interferes with chromosome behaviors during cell division. Seed priming on aged seeds revealed an increase in the germination percentage (GP) with PEG treatment, while the priming by SA showed an increase in seedling traits, such as the seedling length (SL2). In conclusion, we highlighted the potential use of different PTCT lines and the effective use of seed priming on deteriorated seed to enhance seed viability and seedling vigor as a useful tool for sustainable agriculture.