Browsing by Author "Polat, Derya Cicek"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Phytochemical Composition and Biological Activities of Arctium Minus (Hill) Bernh.: a Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent(Mdpi, 2022) Ilgun, Selen; Karatoprak, Gokce Seker; Polat, Derya Cicek; Safak, Esra Kongul; Yildiz, Gulsum; Akkol, Esra Kupeli; Sobarzo-Sanchez, EduardoArctium minus (Hill) Bernh. (Asteraceae), which has a wide distribution area in Turkey, is a medicinally important plant. Eighty percent methanol extracts of the leaf, flower head, and root parts of A. minus were prepared and their sub-fractions were obtained. Spectrophotometric and chromatographic (high-performance liquid chromatography) techniques were used to assess the phytochemical composition. The extracts were evaluated for antioxidant activity by diphenyl-2-picrylhydrazil radical (DPPH?), 2,2 '-Azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS(?+)) radical scavenging, and beta-carotene linoleic acid bleaching assays. Furthermore, the extracts were subjected to alpha-amylase, alpha-glucosidase, lipoxygenase, and tyrosinase enzyme inhibition tests. The cytotoxic effects of extracts were investigated on MCF-7 and MDA-MB-231 breast cancer cell lines. The richest extract in terms of phenolic compounds was identified as the ethyl acetate sub-fraction of the root extract (364.37 +/- 7.18 mg(GAE)/g(extact)). Furthermore, chlorogenic acid (8.855 +/- 0.175%) and rutin (8.359 +/- 0.125%) were identified as the primary components in the leaves' ethyl acetate sub-fraction. According to all methods, it was observed that the extracts with the highest antioxidant activity were the flower and leaf ethyl acetate fractions. Additionally, ABTS radical scavenging activity of roots' ethyl acetate sub-fraction (2.51 +/- 0.09 mmol/L Trolox) was observed to be as effective as that of flower and leaf ethyl acetate fractions at 0.5 mg/mL. In the beta-carotene linoleic acid bleaching assay, leaves' methanol extract showed the highest antioxidant capacity (1422.47 +/- 76.85) at 30 min. The enzyme activity data showed that alpha-glucosidase enzyme inhibition of leaf dichloromethane extract was moderately high, with an 87.12 +/- 8.06% inhibition value. Lipoxygenase enzyme inhibition was weakly detected in all sub-fractions. Leaf methanol extract, leaf butanol, and root ethyl acetate sub-fractions showed 99% tyrosinase enzyme inhibition. Finally, it was discovered that dichloromethane extracts of leaves, roots, and flowers had high cytotoxic effects on the MDA-MB-231 cell line, with IC50 values of 21.39 +/- 2.43, 13.41 +/- 2.37, and 10.80 +/- 1.26 mu g/mL, respectively. The evaluation of the plant extracts in terms of several bioactivity tests revealed extremely positive outcomes. The data of this study, in which all parts of the plant were investigated in detail for the first time, offer promising results for future research.Article Sedative Effects of Latexes Obtained From Some Lactuca L. Species Growing in Turkey(Mdpi, 2020) Ilgun, Selen; Akkol, Esra Kuepeli; Ilhan, Mert; Polat, Derya Cicek; Kilic, Ayse Baldemir; Coskun, Maksut; Sobarzo-Sanchez, EduardoLactuca L. species belong to the Asteraceae family and these plants are traditionally used for therapeutic purposes around the world. The dried milky latex of L. serriola is known as "lettuce oil" and is used as a sedative in Turkey. This study aimed to evaluate the sedative effects and analyze the chemical compositions of latexes obtained from some Lactuca species growing in Turkey. The sedative effects were evaluated through various behavioral tests on mice. For this purpose, latexes were obtained from L. glareosa Boiss., L. viminea (L.) J. Presl and C. P, L. mulgedioides (Vis and Pani) Boiss. and Kotschy ex. Boiss., L. saligna L., and L. serriola L. The latex from L. saligna showed the highest sedative effects, whilst L. serriola and L. viminea latexes also displayed significant sedative effects compared to the control group at a dose of 100 mg/kg. However, the latexes from L. glareosa and L. mulqedioides did not exhibit any sedative effects on mice. Characteristic sesquiterpene lactones (lactucin, lactucopicrin, 11,13 beta-dihydrolactucin, and 11,13 beta-dihydrolactucopicrin) were determined qualitatively and quantitatively by high-performance liquid chromatography (HPLC). Lactucin was identified as the main component.