Browsing by Author "Riane, R."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Ab Initio Investigation of the Structural, Electronic and Optical Properties of Cubic Gaas1-X P X Ternary Alloys Under Hydrostatic Pressure(Springer, 2015) Moussa, R.; Abdiche, A.; Abbar, B.; Guemou, M.; Riane, R.; Murtaza, G.; Soyalp, F.The structural, electronic and optical properties of the GaAs1-x P (x) ternary alloys together with their binary GaP and GaAs compounds were investigated in the zinc-blende (ZB) phase using the density functional theory. The lattice constant of the GaAs compound decreases while its bulk modulus increases when the doping concentration of the P dopant is increased. In addition, both parameters (lattice constant and bulk modulus) show small deviations from the linear concentration dependence. The energy band gap of the GaAs compound is of the direct nature, which increases with the increase in the P dopant concentration, whereas at higher P dopant concentration, the band gap shifts from direct to indirect character. On the other hand, the hydrostatic pressure has a significant effect on the band structure of the investigated compounds where the binary GaAs compound changes from a direct band gap semiconductor to an indirect band gap semiconductor at P a parts per thousand yen 5 GPa. Furthermore, the pressure-dependence of the optical properties of the GaAs, GaP and GaAs0.75P0.25 alloy were also investigated, where the calculated zero frequency refractive index and the dielectric function are also compared with the experimental results as well as with different empirical models.Article First-Principle Study of the Structural, Electronic, and Optical Properties of Cubic Innxp1-X Ternary Alloys Under Hydrostatic Pressure(Walter de Gruyter Gmbh, 2016) Hattabi, I.; Abdiche, A.; Moussa, R.; Riane, R.; Hadji, K.; Soyalp, F.; Khenata, R.In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InNxP1-x in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InNxP1-x compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P = 0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P = 7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.Article First-Principles Study of Structural, Electronic, and Optical Properties of Cubic Inasxnyp1-X Triangular Quaternary Alloys(Iop Publishing Ltd, 2017) Hattabi, I.; Abdiche, A.; Soyalp, F.; Moussa, R.; Riane, R.; Hadji, K.; Khenata, R.In this paper, we investigated the structural, electronic and optical properties of InAs, InN and InP binary compounds and their related ternary and quaternary alloys by using the full potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). The total energies, the lattice parameters, and the bulk modulus and its first pressure derivative were calculated using different exchange correlation approximations. The local density approach (LDA) and Tran-Blaha modified Becke-Johnson (TB-mBJ) approximations were used to calculate the band structure. Nonlinear variations of the lattice parameters, the bulk modulus and the band gap with compositions x and y are found. Furthermore, the optical properties and the dielectric function, refractive index and loss energy were computed. Our results are in good agreement with the validated experimental and theoretical data found in the literature.