Browsing by Author "Seckin, H."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Article Arum Italicum Mediated Silver Nanoparticles: Synthesis and Investigation of Some Biochemical Parameters(Academic Press Inc., 2022) Meydan, I.; Seckin, H.; Burhan, H.; Gür, T.; Tanhaei, B.; Sen, F.The science world advancing day by day contributes to living systems in many areas with the development of nanotechnology. Besides being easily obtained from plants, the advantages it brings increase the importance of nanotechnology. Environmentally friendly, economical, and compatible with plants are just a few of the advantages it brings. Silver metal is one of the most preferred active ingredients in nanoparticle synthesis. Arum italicum is used in the treatment of various diseases in the health sector due to the structures it contains. In our study, nanoparticle synthesis was made by using Ag metal with Arum italicum plant. Then, the antimicrobial, DNA damage prevention and DPPH radical quenching activity of Ag NPs/Ai nanoparticles were investigated. The interaction of the plant with Ag, analysis by X-ray diffraction (XRD), UV visible spectrophotometer (UV–vis), scanning electron microscope and energy dispersive X-ray (SEM-EDX), Fourier-converted infrared spectroscopy (FT-IR) methods has been done. It has been observed that Ag NPs/Ai clusters formed by Arum italicum with Ag have an antibacterial effect against Bacillus subtilis, Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli pathogens. However, an antifungal effect hasn't been observed against Candida albicans fungus. Pseudomonas aeruginosa bacteria exerted a stronger effect than an antibiotic. It is seen that Ag NPs/Ai has a protective and anti-damage effect against DNA damage. The antioxidant effect of Ag NPs/Ai is remarkable when DPPH radical quenching activity is compared to positive control BHA and BHT. © 2021 Elsevier Inc.Article Characterisation, Antibacterial and Antioxidant Effects of Mountain Tea (Sideritis L.) Mediated Silver Nanoparticles in Preventing Dna Damage(Springer, 2025) Gur, T.; Bekmezci, M.; Meydan, I.; Seckin, H.; Sen, F.Nanoparticle-based products formed by combining atomic and molecular level materials find their place in many fields such as industry, cosmetics, medicine and pharmacy. In our study, we synthesised Ag NPs from mountain tea (Sideritis L.) using green chemistry method and demonstrated their material properties by characterisations such as SEM, EDX, FT-IR, XRD and UV-Vis spectroscopy. It was observed that the obtained silver nanoparticles formed inhibition zone diameters of 18 mm, 10 mm and 10 mm against Bacillussubtilis ATCC 6633, Pseudomonasaeruginosa ATCC 27853 and Staphylococcusaureus ATTC 29213 bacteria, respectively. Candidaalbicans ATTC 90028 pathogen, which we used as a fungus, formed a zone diameter of 10 mm. In addition the effect of Ag NPs against DNA damage was determined by gel electrophoresis method. In the images, it is seen that the damaged DNA in the 2 end well is preserved due to the increase in concentration. The effects of Ag NPs used in the 5th and 6 th wells are much better seen compared to the others. Ag NPs showed strong resistance to possible DNA damage. DPPH method was used to investigate the antioxidant effects of AgNPs produced by green synthesis, which is a biological procedure, and as a result, the radical quenching activity of mountain tea was found to be quite good with a value of 80% compared to the positive control BHA. We hope that Ag NPs synthesised from mountain tea, whose structure and properties have been extensively elucidated by various methods, may have a wide range of uses that can serve humanity.Article Evaluation of Antioxidant, Antibacterial and Thermal Stability Properties of Silver Nanoparticles Synthesised With Infundibulicybe Gibba Extract(Springer, 2025) Meydan, I.; Seckin, H.; Kocak, Y.; Okumus, E.; Bekmezci, M.; Sen, F.Mushrooms have been used by people for centuries for various purposes due to their unique taste, high nutritional content and pharmacological effects. Bioactive components in the structure of mushrooms are an important biological source for the green synthesis of silver nanoparticles (AgNPs) as reducing and stabilizing agents. In this study, AgNPs/Ig were synthesized using the mushroom species Infundibulicybe gibba. The color transformation of the formed nanoparticles from yellow to brown occurred and peaked at 370 nm in the UV-Vis spectrum. The nanoparticles had amorphous shape and their molecular characterization was determined by Fourier transform infrared spectroscopy (FTIR). AgNPs/Ig was much more stable (- 50.02 mV) and its hydrodynamic diameter was much lower (216.50 nm) compared to the mushroom extract. A significant increase in the antioxidant activity (IC50 5.66 mg/ml) and thermal stability of the formed nanoparticles was determined. Lipid peroxidation inhibition of the extract and nanoparticles was measured as IC50 value of 6.75 and 5.51 mg/ml, respectively. In the antimicrobial analysis results, while the mushroom extract did not show any inhibition against the selected microorganisms, AgNPs/Ig showed a low antimicrobial activity. As a result, the synthesis of AgNPs/Ig was carried out through green synthesis, which is environmentally friendly, safe, cost-effective, easy to use and does not contain toxic chemicals, and it has been revealed that AgNPs synthesized using this mushroom species have advantageous potential for use.Article Prognostic Factors in Oligodendrogliomas: a Clinical Study of Twenty-Five Consecutive Patients(Asian Pacific Organization for Cancer Prevention, 2015) Atalay, T.; Ak, H.; Celik, B.; Gulsen, I.; Seckin, H.; Tanik, N.; Bavbek, M.Background: The purpose of this study was to evaluate the prognostic significance of Ki-67 and subjective microvascular density (SMVD) indexes together with other factors in patients with oligodendroglioma. Materials and Methods: In this retrospective study, oligodendroglioma specimens obtained from twenty-five consecutive patients were evaluated for Ki-67 and SMVD indices to help determine histological grading and investigate the fidelity of these markers in clinical prognosis. Other potentially prognostic factors were Karnofsky performance scale, tumor histological grade, and adjuvant radiotherapy. Results: The Ki-67 proliferation index appeared to have a strong correlation with the grade of the tumor and the survival. Age, gender, adjuvant radiotherapy, surgical resection type (complete versus incomplete) did not have any influence on recurrence. The SMVD index correlated significantly with the 3 to 5-year survival. Conclusions: Ki-67 and MVD indexes are important and useful markers in estimating the prognosis of oligodendrogliomas.Article Role of Trametes Multicolor in Green Nanotechnology Based Antioxidant, Antimicrobial, Lipid Peroxidation Inhibition From Fungi To Nanoparticles(Springer, 2024) Kocak, Y.; Okumus, E.; Meydan, I.; Seckin, H.; Bekmezci, M.; Sen, F.Fungi as source for new-bio based materials has a wide range of potential uses in the pharmaceutical, cosmetic, and medical sectors. They contain abundant natural bioactive chemical resources. This study reports the use of Trametes multicolour (Tm) mushroom extract for the ecofriendly production of silver nanoparticles (AgNPs). The color of the mushroom extract turns dark brown after a certain period of time when combined with metal. (AgNPs/Tm) and then showed maximum absorption at 318 nm, the wavelength of the surface plasmon resonance of AgNPs. The morphology of AgNPs/Tm was spherical and an EDX peak in the 3 keV region indicated the presence of Ag atoms. The binding properties of the biocomponents involved in NPs handling and stabilising the NPs were identified using Fourier transform infrared spectroscopy (FTIR) data. The synthesized NPs exhibited much higher stability (- 37.63 mV), antioxidant activity (IC50 18.92 mg/ml) and inhibition against lipid peroxidation (IC50 7.46 mg/ml) compared to the mushroom extract. Although there was a significant decrease in the hydrodynamic diameter of the NPs, there was an increase in their thermal stability and antimicrobial activity. As a result, the existence and current potential of a new biomaterial suitable for cost-effective and large-scale production in the synthesis of AgNPs has been demonstrated for the first time.