Browsing by Author "Tombak, A."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Electrical and Photoelectrical Characteristic Investigation of a New Generation Photodiode Based on Bromothymol Blue Dye(Iop Publishing Ltd, 2016) Imer, A. Gencer; Tombak, A.; Korkut, A.Bromothymol blue (BTB) with the molecular formula of C27H28Br2O5S was grown onto p-Si substrate to fabricate heterojunction by spin coating technique. The current voltage (I-V) measurements of diode were carried out in dark and under different illumination intensity at room temperature. The photoelectrical properties of heterojunction based on BTB were investigated using the illumination intensity dependent I-V data. The results showed that photo current of diode increases with the increase in light intensity. Also, the electrical parameters of device were determined via I-V, and capacitance- voltage (C-V), conductance-voltage (G-V) measurements at different frequencies. It is observed that the excess capacitance is created at low frequencies due to the contribution of interface states charge which can follow the alternative current signal to capacitance. It is stated that, both the electrical & photoelectrical parameters of diode can be changed, and also the performance of the device could be affected by the organic thin film interlayer.Article The Novel Pyridine Based Symmetrical Schiff Base Ligand and Its Transition Metal Complexes: Synthesis, Spectral Definitions and Application in Dye Sensitized Solar Cells (Dsscs)(Springer New York LLC, 2018) Gencer Imer, A.; Syan, R.H.B.; Gülcan, M.; Ocak, Y.S.; Tombak, A.The pyridine based azo-linked symmetrical Schiff base ligand, (E)-2,2′-((1E,1′E)-(pyridine-2,6-diylbis(azanylylidene))bis(methanylylidene))bis(4-((E)-phenyldiazenyl)phenol) (H2L), and its Co(II), Ni(II) and Pd(II) transition metal complexes were prepared, and defined by using elemental analysis, Fourier transform infrared, UV–visible, mass, nuclear magnetic resonance spectra, molar conductance, magnetic susceptibility and thermal analysis techniques. The conductivity results pointed out the non-electrolytic nature of all metal complexes. Elemental composition, ultraviolet spectra and magnetic susceptibility data showed that the synthesized complexes are in the binuclear structure and square plane geometry. When compared to the characteristic infrared bands for the functional groups of the ligand structure with complex molecules are reached, the ligand binds to the metal atom via phenolic OH and azomethine-nitrogen. Furthermore, the dye-sensitized solar cells (DSSCs) based on H2L and its metal complexes were fabricated, and photovoltaic properties of these devices were also investigated. The power conversion efficiency of fabricated devices based on ligand H2L can be improved with the incorporation of the transition metal complex. © 2017, Springer Science+Business Media, LLC.