Browsing by Author "Ucler, Nadire"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Estimating Daily Pan Evaporation Data Using Adaptive Neuro Fuzzy Inference System: Case Study Within Van Local Station-Turkey(Gazi Univ, 2021) Ucler, Nadire; Kutlu, FatihThe aim of this study is to model the evaporation data, which is one of the important parameters of the hydrological cycle, by using the Adaptive Neuro Fuzzy Inference System (ANFIS). Four different models were designed starting from one input up to four inputs used average daily temperature (degrees C), average daily relative humidity (%), average daily current pressure (hPa) and average daily wind speed (m/s) as inputs parameters. Total daily pan evaporation (mm) was selected as output parameter. The normalized daily data of the Van Local Station between 2013 - 2017 was used for training of the model. Data for 2018 were used for testing purposes. Also, two stations in different cities were selected for comparison in order to determine whether the models prepared using data from Van Local Station can be used in other stations. For this purpose, a station from Konya province with climatic characteristics similar to Van province and a station from Kocaeli province with different climatic characteristics were selected. In all models, similar results between Van Local Station and the station selected from Konya were observed, while the results between Van Local Station and the station selected from Kocaeli were observed as relatively low compared to the previous comparison. The fourth model, which was designed using four input parameters, achieved the lowest error values at all stations and Kocaeli station got the best R-2 value at this model.Article Numerical Investigation of Hydraulic Efficiency of the Grate Inlet(Asce-amer Soc Civil Engineers, 2023) Ucler, Nadire; Kibar, AliVarious grate inlets are commonly used for different purposes. Since the grate inlets' water-catching capacity depends on many factors, defining the best option is crucial for a sustainable drainage system. In this study, four cases with the same length, width, and void area but different geometries have been numerically studied to establish to which extent the design difference in the grate inlet affects the water-catching capacity. It has been determined how much of the approaching flow is caught by the grate inlets placed on the road with constant transverse and longitudinal slopes. The most efficient case is examined in more detail to determine the effect of the void area location on the water-catching capacity. The numerical results are discussed by comparing them with the analytical results. It has been confirmed that the location and shape of the void areas have an essential effect on the efficiency of grate inlets. Even though the void area is equal, it is concluded that the continuous void areas are more effective than the discontinuous areas. According to the results, choosing the most suitable grate among the alternative inlet designs is possible, or developing a more effective new design using numerical results provides the opportunity to compare the designs.Article A Scenario-Based Interval Multi-Objective Mixed-Integer Programming Model for a Water Supply Problem: an Integrated Ahp Technique(Springer, 2023) Ucler, Nadire; Kocken, Hale GonceRapid population growth, industrialization, and lifestyle modernization all increase water demand. However, water supplies are dramatically decreasing due to declining and irregular precipitation and the excessive use and deterioration of existing resources. This situation places tremendous pressure on decision-makers, who must implement plans to create new water supplies in regions likely to experience water shortages in the future. Deciding which projects to implement among various alternatives is challenging with a limited budget. This study aims to create a feasible strategic plan to select the most suitable alternative projects by proposing a multi-objective mixed-integer programming approach to the water supply problem. Considering several criteria, including chance of success, ease of application, nature-friendliness, and project prestige level, the proposed model is integrated using the analytical hierarchical process technique. Decision-makers' views of the project alternatives are reflected by weights in the model. Also, interval numbers represent the costs of alternatives to handle the problem more realistically. A real-life situation is simulated under various scenarios to test the proposed model. The results show that the proposed integrated model generates more applicable solutions than a classic multi-objective optimization model.