Browsing by Author "Urut, Seyfullah"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Master Thesis Diagnosis and Prediction of Covid-19 From Radiological Images Using a Hybrid Approach Based on Deep Learning Architectural Structure(2022) Urut, Seyfullah; Özdağ, RecepSARS-CoV-2 virüsü kaynaklı yeni bir Koronavirüs hastalığı olan ve etkisini tüm dünyada göstermeye devam eden COVID-19 pandemisi resmi olarak toplamda 623 milyondan fazla vaka sayısına ulaşarak 6.5 milyondan fazla insanın ölümüne sebeb olmuştur. Bu virusün insan vücudunda yaptığı tahribatlar sonucunda, özellikle akciğerideki deformasyon belirgin hale gelmiştir. Bu tezde, derin öğrenme mimarileri olan evrişimsel sinir ağı (Convolutional Neural Network - CNN) ile tekrarlayan sinir ağı (Recurrent Neural Network- RNN) kullanarak akciğer bilgisayarlı bomografi (computed tomography - CT) ve enerjisi yüksek frekanslı elektromanyetik radyasyon (energetic high-frequency electromagnetic radiation - X-Ray) görüntülerinden COVID-19'un teşhisi ve tahmin edilmesi amaçlanmıştır. Bu amaçla tez kapsamında öncelikle CNN mimarisi esas alınarak pozitif COVID-19, negatif COVID-19 ile akciğer iltihabı vakalarından oluşan ve toplam 9150 adet olan akciğer X-Ray ve CT radyolojik görüntülerden özellik çıkarımı gerçekleştirilmiştir. Sonrasında ise RNN mimarisi olan Uzun kısa süreli bellek (long short-term memory ˗ LSTM) modeli esas alınarak görüntülerin sınıflandırması gerçekleştirilmiştir. Tasarlanan hibrit (CNN+LSTM) mimarisi ile test görüntülerinin sınıflandırılmasında %93'lük bir doğruluğa ulaşılmıştır. Bu tezde, radyolojik görüntülerden pozitif COVID-19'un sınıflandırılmasında RNN-LSTM modeli ile farklı bir hibrit mimari yapı tasarlanarak; hem literature katkı sağlanmış, hem de pozitif COVID-19 vakalarının teşhisi ve tahmin edilmesi sürecinde radyologların hızlı ve doğru karar vermelerine yardımcı olunmuştur.