Browsing by Author "Yaganoglu, Elif"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article The Changes in Yield, Quality, and Soil Properties of Turfgrass Grown by Applying Varying Levels of Hazelnut Husk Compost and Irrigating With Wastewater in Soils With Different Textures, and Their Effects on Carbon Dioxide Emissions From the Soil(Springer int Publ Ag, 2023) Yerli, Caner; Senol, Nergiz Dila; Yaganoglu, ElifThe increasing population in the world complicates the management of solid and liquid wastes. In irrigation with wastewater and application of organic wastes to the soil, both discharges of the waste problems are solved and waste management is provided and the need for synthetic fertilizers is reduced by increasing soil and crop productivity. Hence, more environmentally-friendly and economical production can be developed in agriculture. This context, in this study, in which the yield-quality of turfgrass and soil was investigated by applying varying amounts of hazelnut husk compost to different soil textures and by irrigating with different water qualities, increasing organic matter and carbon, total N, P2O5, K2O, exchangeable cations, and Fe, Cu, Mn, and Zn contents of the soil increased nutrient contents of the turfgrass and turfgrass yield-quality values in both soil textures with increasing dose of hazelnut husk compost and in irrigation with wastewater compared to fresh water. Irrigation with wastewater and compost improved the yield-quality of turfgrass and soil; however, they resulted in higher levels of carbon dioxide emissions from the soil. In addition, the emission was even higher in clay-loam soil compared to in sandy-loam. It was found that the compost and irrigation with wastewater applications in turfgrass areas are recommendable production strategies to increase crop yield-quality and support soil fertility. However, since increased carbon dioxide emissions in these conditions are environmental and ecological risk, a more intensive production accompanied by emission-reducing practices was considered a recommendable result to carry out studies on the development of strategies.Article Enhancing Soil Properties and Crop Growth in Varied-Texture Soils: Evaluating the Efficacy of Biochar in Mitigating Irrigation Water Salinity(Gh Asachi Technical Univ Iasi, 2023) Yaganoglu, Elif; Senol, Nergiz Dila; Yerli, CanerThe dwindling freshwater resources and escalating pressure on them have underscored the imperative of utilizing low-quality saline water for irrigation. Nevertheless, this practice often exacts a toll on soil quality and leads to a decline in crop yield and quality. Consequently, there is an urgent demand for innovative, environmentally sustainable approaches to safeguard soil health and crop productivity when utilizing saline water for irrigation. Pyrolyzed biomass, commonly known as biochar, emerges as a promising and eco-friendly soil amendment with the potential to withstand the rigors of salinity stress. In light of this, our study aims to assess the impact of different rates of biochar application in mitigating the effects of varying levels of irrigation water salinity across diverse soil textures. We investigate alterations in soil properties, enzymatic activities, mineral content, as well as the physiological and morphological attributes of tomato plants. The objective is to comprehensively understand the potential of biochar to ameliorate salt stress under different soil conditions. Our findings indicate that biochar, when employed in conjunction with NaCl-laden irrigation water, enhances the physiological and morphological characteristics of tomato plants, augments the concentrations of essential nutrients such as N, P, and K, and fosters the development of soil aggregate stability. Furthermore, biochar positively influences pH levels, organic matter content, total N, P2O5, K2O, cation exchange capacity (CEC), and soil enzyme activities. Importantly, it fortifies the crop's resilience to salinity stress. Significant disparities between soil textures are discerned in all assessed parameters; however, biochar consistently exhibits its salinity-mitigating efficacy across all soil types. In summary, our research underscores biochar as a promising and universally applicable solution for mitigating stress and enhancing the quality of tomato crops and soil health when confronted with the challenge of saline water for irrigation.