1. Home
  2. Browse by Author

Browsing by Author "Yazgan, Yener"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Antiprotozoal Effects of Pediococcus Acidilactici-Derived Postbiotic on Blastocystis Subtypes ST1/ST3
    (MDPI, 2025) Aydemir, Selahattin; Arvas, Yunus Emre; Aydemir, Mehmet Emin; Barlik, Fethi; Gurbuz, Esra; Yazgan, Yener; Ekici, Abdurrahman
    Blastocystis, a common intestinal protozoan in humans, is associated with gastrointestinal disorders, irritable bowel syndrome, urticaria, and colorectal cancer. Its genetic diversity and potential for treatment resistance make it a focus of ongoing research. This study evaluated the in vitro antiprotozoal activity of a postbiotic derived from Pediococcus acidilactici as a natural alternative treatment. P. acidilactici cultures were grown in MRS broth under anaerobic conditions, and the postbiotic was collected and characterized for pH, yield, organic acid composition, and phenolic compound content. Human isolates of Blastocystis subtypes ST1 and ST3 were cultured in Jones' medium and exposed to varying postbiotic concentrations for 72 h. Viability was assessed microscopically. The cytotoxic effect of the postbiotic-derived P. acidilactici was evaluated by investigating its impact on the viability of HT-29 cells using the Cell Counting Kit 8. The postbiotic showed a 7% yield and a pH of 4.52 +/- 0.11. It contained seven different organic acids, predominantly lactic acid, and eleven phenolic compounds, with naringin as the most abundant. At 4.38 mg/mL, the postbiotic achieved over 94% inhibition and 100% inhibition at 8.75 mg/mL and above. A pH analysis confirmed that the inhibition was independent of the culture medium acidity. Cell viability was not affected at the postbiotic concentration showing 100% antiprotozoal activity (8.75 mg/mL). These findings suggest that the P. acidilactici postbiotic is effective on a mixed culture of ST1 and ST3 subtypes and holds promise as a safe, natural antiprotozoal agent. Further in vivo studies are needed to confirm this.
  • Loading...
    Thumbnail Image
    Article
    Selenium Reduces Cadmium-Induced Cardiotoxicity by Modulating Oxidative Stress and the ROS/PARP-1/TRPM2 Signalling Pathway in Rats
    (MDPI, 2025) Yazgan, Yener; Keles, Omer Faruk; Bayir, Mehmet Hafit; Cicek, Haci Ahmet; Ahlatci, Adem; Yildizhan, Kenan
    Cadmium (CAD) is a prevalent environmental contaminant that poses serious cardiotoxic risks. The heart, kidney, liver, and brain are just a few of the essential organs that can sustain serious harm from CAD, a very poisonous heavy metal. The cardiotoxic mechanism of CAD is linked to oxidative damage and inflammation. A trace element with anti-inflammatory, anti-apoptotic, and antioxidant qualities, selenium (SEL) can be taken as a dietary supplement. The biotoxicity of heavy metal CAD is significantly inhibited by SEL, a mineral that is vital to human and animal nutrition. Through ROS-induced PARP-1/ADPR/TRPM2 pathways, this study seeks to assess the preventive benefits of selenium against cardiovascular damage caused by CAD. The SEL showed encouraging results in reducing inflammatory and oxidative reactions. Rats were given 0.5 mg/kg SEL and 3 mg/kg 2-Aminoethyl diphenylborinate (2-APB) intraperitoneally for five days, in addition to 25 mg/kg CAD given via gavage. Histopathological examination findings revealed that the morphologic changes in the hearts of the CAD group rats were characterised by marked necrosis and the degeneration of myocytes and congestion of vessels. Compared to the rats in the CAD group, the hearts of the SEL, 2-APB and SEL+2-APB groups showed fewer morphological alterations. Moreover, in rats given CAD, there was an increase in cardiac malondialdehyde (MDA), total oxidant (TOS), reactive oxygen species (ROS), caspase (Casp-3-9), and TNF-alpha, whereas glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant (TAS) decreased. SEL improved antioxidants, avoided tissue damage, and reduced cardiac MDA, TOS, and ROS. In rats given CAD, SEL decreased cardiac PARP-1, TRPM2, TNF-alpha, and caspase. In summary, by reducing oxidative stress and cardiac damage and modifying the ROS/PARP-1/TRPM2 pathway, SEL protected against CAD cardiotoxicity.