Browsing by Author "Aras, Abdulmelik"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Determination of Anticancer Properties and Inhibitory Effects of Some Metabolic Enzymes Including Acetylcholinesterase, Butyrylcholinesterase, Alpha-Glycosidase of Some Compounds With Molecular Docking Study(Taylor & Francis inc, 2021) Turkan, Fikret; Taslimi, Parham; Abdalrazaq, Sakar Mubarak; Aras, Abdulmelik; Erden, Yavuz; Celebioglu, Hasan Ufuk; Gulcin, IlhamiInhibitory effect of the complexes on some metabolic enzyme demonstrated that the enzymes inhibited by ligand and it's complex molecules at the micromolar level. The best inhibition effect for alpha-glycosidase (alpha-Gly) enzyme against cobalt complex with Ki value of 3.77 +/- 0.58 mu M. For achethylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes against SM-Co complex, Ki values of 74.23 +/- 5.02 mu M and 101.21 +/- 12.84 mu M Ki were observed, respectively. Molecular docking studies were performed to compare the biological activities of ligands and ligand complexes against enzymes whose names are AChE for ID 4M0E, BChE for ID 5NN0, alpha-Gly for ID 1XSI respectively. Also, anticancer properties of the complexes studied. The doses of all compounds caused significant reductions in MCF-7 cell viability. Zr compound showed the best cytotoxic activity against the MCF-7 cell. SM ligand administered to PC-3 cells exhibited a more pronounced cytotoxic effect than the SM-Co and Zr compounds. Communicated by Ramaswamy H. SarmaArticle Metal Contained Phthalocyanines With 3,4-Dimethoxyphenethoxy Substituents: Their Anticancer, Antibacterial Activities and Their Inhibitory Effects on Some Metabolic Enzymes With Molecular Docking Studies(Taylor & Francis inc, 2022) Taslimi, Parham; Turkan, Fikret; Gungordu Solgun, Derya; Aras, Abdulmelik; Erden, Yavuz; Celebioglu, Hasan Ufuk; Gulcin, IlhamiThe compounds (3-6) used in this study were re-synthesized in accordance with our previous study. The inhibitory effect of the complexes on some metabolic enzymes was examined and it was demonstrated that the enzymes inhibited by ligands and their complex molecules at micromolar level. The best Ki value for alpha-glycosidase enzyme was absorved 1.01 +/- 0.08 mu M for compound 6. The biological activity of ligand and metal complexes against enzymes was compared with molecular docking method. The enzymes used against ligand and metal complexes respectively: Achethylcholinesterase for ID 4M0E (AChE), butyrylcholinesterase for ID 5NN0 (BChE), alpha-glycosidase for ID 1XSI (alpha-Gly). ADME analysis was performed to examine the drug properties of the compounds (3-6). Besides, the anticancer properties of the complexes were studied. The doses of all compounds caused significant reductions in MCF-7 cell viability. The 3 and 5 compounds administered to PC-3 cells exhibited a more pronounced cytotoxic effect than the other two compounds (4 and 6). Furthermore, antibacterial activities of these compounds against Escherichia coli and Staphylococcus aureus were examined. Communicated by Ramaswamy H. Sarma