Browsing by Author "Boyno, Goekhan"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article The Complex Interplay Between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions(Mdpi, 2023) Boyno, Goekhan; Rezaee Danesh, Younes; Demir, Semra; Teniz, Necmettin; Mulet, Jose M.; Porcel, RosaPlants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.Article The Effect of Arbuscular Mycorrhizal Fungal Species Funneliformis Mosseae and Biochar Against Verticillium Dahliae in Pepper Plants Under Salt Stress(Springer, 2024) Gunes, Hasret; Demir, Semra; Durak, Emre Demirer; Boyno, GoekhanBoth biotic and abiotic stress factors play an important role in reducing the growth and productivity of many crops. In this study, the effects of arbuscular mycorrhizal (AM) fungi and biochar (Bc) were investigated against Verticillium dahliae (Vd) disease in pepper plants grown under salt stress. These effects were evaluated on enzyme activities, salt tolerance, disease severity, plant growth and physiological characteristics. In this study, pepper was treated with 2% biochar, Funneliformis mosseae (Fm), Vd and different concentrations of salt (0 mM, 50 mM, 100 mM, 150 mM). The interaction of Fm and 2% Bc significantly increased the morphological parameters of the plant and the plant tolerated salt and Vd under combined high stress conditions of biotic (Vd) and abiotic (salt) stresses. It was also shown that Fm had a different effect than Bc on the membrane injury index (MII; %) and had a significant effect on leaf relative water content (LRWC; %). In addition, Vd increased mycorrhizal reliance, with the higher spore density of AMF higher disease severity observed in treatments involving Fm and Fm + Bc. Furthermore, phenol and antioxidant values were altered in Vd treatments, while Fm decreased CAT enzyme activation. Therefore, this study supports that AMF + biochar used in sustainable agriculture increases plant resistance to the soil pathogen (V. dahliae) and the salt stresses.Article Preliminary Insights Into Sustainable Control of Solanum Lycopersicum Early Blight: Harnessing Arbuscular Mycorrhizal Fungi and Reducing Fungicide Dose(Mdpi, 2024) Demir, Semra; Boyno, Goekhan; Rezaee Danesh, Younes; Teniz, Necmettin; Calayir, Oktay; Cevik, Rojbin; Calzarano, FrancescoTomato (Solanum lycopersicum L.) production is constantly threatened by several fungal pathogens, such as Alternaria solani, the causal agent of early blight disease. In this study, a greenhouse experiment was set up to evaluate the biocontrol ability of arbuscular mycorrhizal fungi (AMF) against A. solani in the presence of reduced doses of fungicides (i.e., captan and copper oxychloride). Disease severity, plant growth traits, chlorophyll and phosphorus content, phenolic compounds, and antioxidant activity were assessed. The effects of fungicide dose on AMF were investigated by root colonization, spore density, and mycorrhizal dependence evaluation. AMF-inoculated and fungicide-treated plants reduced disease severity compared to fungicide-treated and non-mycorrhizal plants, in most cases, regardless of the fungicide dose. AMF improved plant growth, especially when combined with copper oxychloride. However, plant fresh weight decreased in plants treated with the lowest dose of captan (25 g 100 L-1). Overall, AMF colonization decreased in plants with high fungicide doses, while the leaf color parameters did not show differences between treatments. The results suggest reducing the fungicide dose using AMF is possible, particularly for copper oxychloride. Further studies will be required to confirm these data. This integrated approach could offer a sustainable alternative to decrease the use of chemical control.